
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A NUMERICAL STUDY OF HEAT TRANSFER BEHAVIOR
IN WELDING

by

Yasar Vehbi Isiklar

June, 1998

Thesis Advisor: Ashok Gopinath

ro

Approved for public release; distribution is unlimited.

[»SIC QUALITY INSPECTED 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
June 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE
A NUMERICAL STUDY OF HEAT TRANSFER BEHAVIOR IN WELDING

6. AUTHOR (S) Isiklar, Yasar V.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITOPJNG AGENCY NAME(S) AND ADDRESS(ES)
NAVSEA Carderock, Maryland

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRmunON/AVATLABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
A numerical model has been developed for three-dimensional transient conduction based temperature calculations in

underwater wet welding on a thick rectangular plate. The numerical scheme is based on a fully implicit finite volume
method. A variable mesh size centered around the moving heat source, and temperature dependent thermal properties have
been used in the calculations. Convective, radiative and boiling surface thermal conditions have also been included. The
weld pool region itself has been modeled as a solid region of thermal conductivity higher than the surrounding unmelted
region. The validity of the results was checked by comparison with Rosenthal's three-dimensional solution for a moving
point heat source, and other results in the literature.

14. SUBJECT TERMS Underwater Wet Welding, Heat Transfer, Finite Volume Method

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 125

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

A NUMERICAL STUDY OF HEAT TRANSFER BEHAVIOR IN WELDING

Yasar V. Isiklar
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

fromme

NAVAL POSTGRADUATE SCHOOL
June 1998

Author:

Approved by:

in

IV

ABSTRACT

A numerical model has been developed for three-dimensional transient

conduction based temperature calculations in underwater wet welding on a thick

rectangular plate. The numerical scheme is based on a fully implicit finite volume

method. A variable mesh size centered around the moving heat source, and temperature

dependent thermal properties have been used in the calculations. Convective, radiative

and boiling surface thermal conditions have also been included. The weld pool region

itself has been modeled as a solid region of thermal conductivity higher than the

surrounding unmelted solid region. The validity of the results was checked by comparison

with Rosenthal's three-dimensional solution for a moving point heat source, and other

results in the literature.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

E. BACKGROUND 3

A. PREVIOUS STUDIES 3

B. FINITE VOLUME METHOD 7

m. MODEL DEVELOPMENT 13

A. DEFINING THE WORKPIECE .13

B. BOUNDARY CONDITIONS 14

1. Top Face 14

2. Other Faces 15

3. Simulating The Arc 16

4. Boiling Heat Transfer 16

a. Free Convection Regime 17

b. Nucleate Boiling Regime 18

c. Transition Boiling Regime 19

d. Film Boiling Regime 20

C. COEFFICIENTS USED IN THE EQUATIONS 22

D. DERIVATION OF THE EQUATIONS 23

IV. RESULTS AND DISCUSSION... 45

V. CONCLUSIONS AND RECOMMENDATIONS 61

APPENDLX A: PROGRAM STRUCTURE 63

vii

APPENDIX B: PROGRAM CODES 71

LIST OF REFERENCES 107

INITIAL DISTRIBUTION LIST Ill

vm

LIST OF SYMBOLS

SYMBOL DESCRIPTION UNITS

cp specific heat J/kg K
Cs/ emprical constant
d exponential factor
g gravitational acceleration m/s2

h convective heat transfer coefficient; W/m2K
h combined heat transfer coefficient W/m2 K

h c local heat transfer coeff. convection conductance W/m2 K

h r average heat transfer coeff. for radiation W/m2 K
hfg latent heat of vaporization J/kg
k thermal conductivity W/m K
L characteristic length m
q heat flux W/m2

q0 volumetric heat energy generation rate W/m3

Q heat input to the workpiece W
r0 radius of the heat input distribution m
R radial distance from the origin m
t time s
T temperature K or C
U welding speed m/s
V volume m3

a thermal diffusivity m2/s
ß volumetric thermal expansion coefficient K"1

S distance between two neighboring grid points m
A difference between values
s surface emissivity
0 finite volume method coefficient
// absolute viccosity Ns/m2

v kinematic viscosity m2/s
p density kg/m3

<r Stefan-Boltzman constant W/m2 K4

ex surface tension N/m

IX

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge the support of NAVSEA for

this project.

The author would like especially to express his appreciation to Prof.Ashok

Gopinath for his expert assistance and creative influence throughout the course of this

research. The author also wishes to thank his colleague, Ltjg.Ibrahim Girgin for various

forms of assistance and computational support.

Finally, the author would like to express his sincere gratitude to his wife Gonul

and his family for their patience, understanding and encouragement during the

preparation of this thesis research.

XI

xn

I. INTRODUCTION

To improve the quality of the underwater welding and to accomplish a reliable,

permanent underwater wet welding capability has a great importance in today's industrial

and military facilities. With the development of underwater wet welding techniques, the

time and the money required for permanent and temporary repairs of ships and other

underwater structures can be minimized. Today, the use of hyperbaric welding process

obtains a limited quality of welding especially for the construction and repairs of

underwater pipelines. In this process a large pressure chamber is used to keep the water

away from the workpiece. But, operating this kind of chamber is very expensive and due

to the limited geometric size, only a few joint configurations can be enclosed in a

chamber [Ref.l]. The other welding techniques such as double shielding and flux

shielding also use the water removing theory from the arc area during welding. But, the

working area must be completely prevented from water for satisfactory welding results

[Ref. 2].

Currently, underwater wet welding is used for the temporary repair needs.

Because of their poor quality compared to surface (air) welds (they obtain 80% of the

tensile strength and 50% ductility of the surface welds [Ref. 3].), they must be replaced as

soon as possible. Therefore, the development of a more efficient wet welding technique is

the only solution to this problem.

The surrounding water environment during wet welding causes rapid cooling and

steep temperature gradients in the weld area behind the arc [Ref.4]. Because of the

1

extremely complex nature of the heat transfer phenomena between heated surface and the

water environment, a numerical model simulation is necessary.

In the present study, a numerical model has been developed for transient, three-

dimensional conduction heat transfer in underwater welding process on a thick

rectangular plate. The numerical scheme was based on fully implicit finite volume model,

including convection, radiation and boiling surface thermal boundary conditions. The

different regimes of boiling were accounted for on the surface. A variable mesh size

centered around an arc source moving at constant speed was used to determine

temperature variations inside and around the weld pool. The weld pool region itself has

been modeled as a solid region of thermal conductivity higher than the surrounding

unmelted solid region. The input data from the previous studies based on different

methods were used to check the accuracy and the validity of the numerical method.

II. BACKGROUND

A. PREVIOUS STUDIES

Rosenthal did the most important early work on the theory of the effect of moving

sources of heat in the late of 1930s. He studied the fundamentals of this theory and

derived equations for two-dimensional and three-dimensional heat conduction in a solid

when a moving source is in use [Ref. 5,6]. The analytical solution derived by Rosenthal

was based on the principle of a quasi-stationary thermal state. The quasi-stationary

thermal state represents a steady thermal response of the weldment with respect to the

moving coordinates. In other words, the origin moves with the heat source, and for an

observer at origin, the temperature distribution and the pool geometry do not change with

time [Ref. 6,7]. Rosenthal's solution for three-dimensional heat flow during welding is

as follows [Ref. 6]:

2x(T-T0)ksR
—i =exp

Q

f U(R-x)^
2a,

(2.1)

where

R = radial distance from origin [x2 + v2 + z2)
T = temperature,
TQ = workpiece temperature before welding,
ks = thermal conductivity of solid,
Q = heat input to the workpiece,

,1/2

U = welding speed,
x = the distance that the heat source traveled,
as = thermal diffusivity of solid (i.e., ks I pC5, where p and Cs are density and

specific heat of solid, respectively).

The assumptions used by Rosenthal to derive the equation above are as follows

[Ref. 7]:

1. Point heat source.
2. No melting and negligible heat of fusion.
3. Constant thermal properties.
4. No heat loss from the workpiece surface.
5. Infinitely wide workpiece.

Although Rosenthal's assumptions help to simplify the mathematical analysis

involved, there are some significant deviations between theoretical and experimental

results. For instance, as a result of the point heat source assumption, the temperature at

the weld centerline goes to infinity even though the power of the heat source is finite.

Also, the values of thermal properties change with the temperature and neglecting the

heat fusion gives considerable errors. [Ref. 7]

Tanaka did the first studies on the application of the mathematical analysis of

non-stationary heat flow to the practical problems. Naka and Masubuchi studied the

mathematical analysis of non-stationary heat flow. They used dimensional expressions to

make the numerical calculations simple. Nippes and Savage studied the cooling rates of

heat affected zones by using a graphical approach method. Suzuki found an analytical-

empirical method of studying the effects of welding parameters and determined the

cooling rate from welding conditions with the help of a monograph. [Ref.6]

Adams derived new equations from Rosenthal's equation by using the fusion line

as a boundary condition and calculated the peak temperature at a distance from the fusion

boundary at the weldment surface [Ref. 7]. His equation for three-dimensional heat flow

is as follows:

1 5A4ftksas

Tp-T0 QU
2 +

2asJ
+ Tm-T0

(22)

where all the terms are defined in equation (2.1) except

T = peak temperature at a distance Y from the fusion boundary,

Tm = melting temperature,

Christensen also used analytical-empirical approach and derived dimensionless

equations based on Rosenthal's three-dimensional equation. He explained the relation-

ships between the welding conditions and the weld bead geometry. [Ref. 7]

Recently, numerical analysis methods and computer programs have been

commonly used to develop the previous assumptions. In 1965, The Battelle Institute

Geneva Laboratory in Switzerland conducted a computer-aided study about analyzing of

heat flow in weldments [Ref. 6]. The University of Wisconsin and McDonnell Douglas

Aircraft Company also conducted similar studies in the same year [Ref. 6]. In 1970,

M.I.T. researchers studied heat flow during underwater welding. They also developed

finite element programs on heat flow during welding [Ref. 6]. Oreper and Szekeley

examined stationary, axisymmetric TIG (tungsten-inert-gas) welding process with a

moving boundary by using finite difference method. Their formulation contained the

affects of transient conduction, electromagnetic, buoyancy and surface tension forces

[Ref. 8]. Kou and Wang performed computational studies of the GTA welding process.

They presented a computer simulation of three-dimensional convection for an arc source

moving at constant speed. They considered electromagnetic, buoyancy and surface

tension forces on the pool surface. They found very good agreement between the

calculated and observed fusion boundaries [Ref. 9]. They also studied the computer

simulation of three-dimensional convection in laser melting by considering the buoyancy

force and the surface tension gradient at the weld pool surface [Ref. 10]. Correa and

Sundell studied axisymmetric stationary arc source by using different grid sizes for

computation of flow and electromagnetic fields [Ref. 11]. Saedi and Unkel developed a

thermal-fluid model of the weld pool. Their model was based on the stationary arc. To

describe the weld pool geometry, they matched the convective and the conductive heat

fluxes at the weld boundary by using an iterative calculation method [Ref. 12]. Zacharia

et al. made three-dimensional calculations on the effects of the heat source in the

stationary GTAW process. He indicated that a depressed area formed at the weld pool

center because of an outward fluid flow caused by surface tension force [Ref. 13]. Kim

and Na developed a model on heat and mass flow for stationary, GTAW process with

electromagnetic, buoyancy and surface tension forces. They used numerical mapping

method for calculations [Ref. 14]. Ramanan and Korpela compared the effects of thermo-

capillary and Lorentz forces on the flow pattern in a stationary weld pool with buoyancy

forces. They used multi-grid methods and a local grid refinement technique with

axisymmetric stationary arc source [Ref. 14]. Ule, Joshi and Sedy determined three-

dimensional transient temperature variations in the GTAW process by using the explicit

finite difference method. They used different mesh sizes and temperature dependent

thermal properties. They also considered convective and radiative surface thermal

conditions during calculations [Ref. 16]. Kanouff and Greif studied the unsteady

development of an axisymmetric arc weld pool in GTAW process. They used moving

grids to follow the phase change boundary and considered the effects of Marangoni,

Lorentz and buoyancy forces in the calculations [Ref. 17]. Joshi, Dutta, Schupp and

Espinosa developed a three-dimensional numerical model to describe the flow circulation

phenomena in aluminum weld pools under non-axisymmetric Lorentz force field [Ref.

18,19].

B. FINITE VOLUME METHOD

The finite volume method is one of the simple and well-established

Computational Fluid Dynamics (CFD) techniques that were originally developed as a

special finite difference method [Ref. 19]. The stages of the numerical algorithm in this

method are as follows [Ref. 19]:

1. Formal integration of the governing equations of fluid flow over all the finite
control volumes of the solution domain.

2. Discretisation involves the substitution of a variety of finite difference type
approximations for the terms in the integrated equation representing flow
process such as convection, diffusion and sources. This converts the integral
equations into a system of algebraic equations.

3. Solution of the algebraic equations by an iterative method.

In the control volume integration, the calculation domain is divided into discrete

control volumes. There is only one control volume surrounding each grid point and the

boundaries of the control volumes are positioned side to side in the middle of the distance

between the grid points. Integrating the governing differential equation over each control

volume derives the resulting discretised equations. The discretised equations express the

conservation of quantities such as mass, momentum and energy for each control volume.

This characteristic exists for any number of grid points. The numerical solution insures

the validity of the conservation principle over the whole calculation domain for the

related quantities. Versteeg and Malalasekera [Ref. 20] wrote " This clear relationship

between the numerical algorithm and the underlying physical conservation principle

forms makes finite volume method much simpler to understand by engineers than finite

element and spectral methods". To understand the finite volume method better an

illustrative example can be given for one-dimensional steady state heat conduction

situation. [Ref. 20,21,22]

1. One dimensional steady state heat conduction

The governing equation for one-dimensional steady state heat conduction is

dx
k—

V dx)
+ S = 0 (2.3)

where

k = thermal conductivity,
T = temperature,
iS = the rate of heat generation per unit volume.

The domain is divided into small and nonoverlapping control volumes. A part of

one-dimensional grids generated is shown in Figure 2.1. Here, The grid point under

construction is denoted as P and the neighboring nodes to the east and west are denoted as

E and W respectively. The lower case letters e and w denotes the east and west faces of

the control volume. The distance between the nodes W and P is denoted by Sx^ and

between P and E is denoted by öxPE. The distances between w and P and between P and e

are given by äcwP and &cPe respectively. The control volume width is shown as

Ax = &c,„a

W

-*-

E

SxwP &cPe

& twp & CPE

Figure 2.1 One-dimensional grid [Ref. 20]

Integrating equation (2.3) over the control volume gives,

f JT\ f dT\ dT
k

dx
+

W VI

jSdx = 0 (2.4)

By assuming a piecewise-linear profile assumption (Figure 2.2), equation (2.4)

can be evaluated as

(T —T~\ lE 1P

Sx \ a*PE J
-K

(T T ~\ 1P 1w

Sx
+ SAx = 0 (2.5)

where S is the average value of S over the control volume.

T

L

T v ^_^_

7 r 1 r

1 kV w I 5 e E X

Figure 2.2 Piecewise -linear Profile [Ref. 22]

By arranging the terms, the final discretised equation can be written as

aPTp =aETE +awTw +b (2.6)

where

aE = Sx PE

(2.7a)

10

aw =
Sx, WP

ap =aE+ aw

b = SAx

(2.7b)

(2.7c)

(2.7d)

11

12

IE. MODEL DEVELOPMENT

A. DEFINING THE WORKPIECE

The workpiece has been defined as a thick rectangular plate (Figure 3.1).

 5 9
1

H^/

3 4

S
2

6

Figure 3.1 The workpiece

where

1. Right Lateral Face (East)
2. Left Lateral Face (West)
3. Back Face (North)
4. Front Face (South)
5. Top Face (Top)
6. Bottom Face (Bottom)

Convective heat transfer coefficients for each face have been defined as follows:

Right-Lateral Face: he

Left-Lateral Face : hw

Back Face : hn

Front Face : hs

Top Face : ht

Bottom Face : hb

The same method has been also used to define thermal conductivity and heat flux terms

for each face.

13

B. BOUNDARY CONDITIONS

1. Top Face

By adding radiative and convective heat loss from the top face, boundary

condition equation can be defined as

~k% = h{Twa" -rj + ^"+^fc -r-) f3'1)

In equation (3.1), for the radiation term, Tmr can be neglected. \T*aU » T*ur). The

distance between the node point P and the face can be taken as Ax/2, where the distance

between the node point P and the neighboring nodes is Ax . Again, for the radiation term,

because of the small distance between the node point P and the face, by assuming

Ty>all = TP » We haVe

_k(Twal, -T) = _rj + q„+ a£T< {32)

Ax/2

Equation (3.2) can be opened as

Ik Ik
~—Twal, +—TP = hTwea-hTm+q"+<xT; (3.3)

Ax Ax

Equation (3.3) can be arranged as

14

/<->/, \
■ wall

2k_

vAx j
+ h

lie
= —TP+hTx-q"+asTP

4

Ax
(3.4)

Equation can be written as

T = 1wall

2A

Ax
TP+hTa>-q"+(7€TP"

2k_

Ax
+ h

(3.5)

The unknown temperature for the top face points is found as

■*wall ~

2kTP + hAxTa -q"Ax- crsAxT*

2k + hAx
(3-6)

where

„n „it
(z top tf source " l '9 boiling (3.7)

<l"sou™ = dxc source heat flux,
q"t = a constant arbitrary heat flux which may be applied to the top face,

<fboiung = boiling heat flux,

2. Other Faces

By using the same method from the top face (without radiation),

15

_2kTP+hAxTcc-q"Ax
Kall~ li^Mx (3-8)

3. Simulating the Arc

To simulate the heat input from the arc to the workpiece, it is assumed that the

heat input distribution of the arc have a Gaussian distribution on the top face of the

workpiece. The general equation is

Q = q0je '• 2mdr (3.9)

where

Q = the total heat input into the workpiece,
q0 = the volumetric energy generation rate,

r0 - the radius of the heat input distribution,

d = the exponential factor,

By solving equation (3.9), the volumetric energy generation rate can be found as

q0=^ (3.10)
m-0

4. Boiling Heat Transfer

Modes or regimes of boiling and the related equations can be classified as follows

(where ATe =TS-Tsal):

16

a. Free Convection Regime (ATe < 5 °C)

In this regime, natural convection effects determine the heat transfer

between the heating surface and surrounding liquid. Recommended correlations for upper

surface of heated plate are [Ref. 25]

NÜL = 0.5ARaxl" [itf <RaL<W) (3.11)

NUL = 0.15Jta}/3 (lO7 <RaL <10n) (3.12)

where the Rayleigh number,

Rai = gß(T,-T.)ü (313)

va

here

g = gravitational acceleration, m/s

and

ß = volumetric thermal expansion coefficient, K"1

v = kinematic viscosity, m /s
a = thermal diffusivity, m /s
L = characteristic length, L = Plate surface area (As)l Perimeter (P)

h = *^ (3.14)

and the value of heat flux is,

17

g"=h(Ts-TJ (3.15)

b. Nucleate Boiling Regime (5 °C < ATC < 30 °C)

The most useful nucleate pool boiling correlating equation was developed

by Rohsenow [Ref. 23, 24, 25,],

q"=Mihfs
g(Pi-pv)

1/2 / cnATe pj e

(3.16)
AAPr".

where the subscripts s, 1, and v express surface, saturated liquid state and vapor state. The

definition of each term in equation (3.16) are as follows:

/// = viscosity of the liquid, kg/ms

hfg = latent heat of vaporization, J/kg

g = gravitational acceleration, m/s2

P* = density of the saturated liquid, kg/m3

P* = density of the saturated vapor, kg/m3

a = surface tension of the liquid-to-vapor interface, N/m
cpl = specific heat of saturated liquid, J/kgK

*Te = Ts-Tsa,

Pr, = Prandtl number of the saturated liquid

n = 1.0 for water, 1.7 for other fluids
Csf = empirical constant that depends on the nature of the heating

surface fluid combination and whose numerical value varies
from system to system

But, in underwater welding, the surrounding water temperature is below the

saturation temperature (between 0°C and 30 °C). This is called as the heat transfer to a

subcooled liquid. For the subcooled boiling, the heat flux can be estimated as [Ref. 23]

18

q"=qs"i i + ^l\^sat * liquid) 24
nhf.pv

Pv

og(p,-pv)

1/4

where

*/
a,

■■ thermal conductivity of the liquid, W/m.K
: thermal diffusivity of the liquid (k I pcp), m

2/s and,

(3.17)

3 g(Pl-Pv)

1/2

PV

Og(Pl-Pv)

1/4

(3.18)

c. Transition Boiling Regime (30 °C < ATe < 120 °C)

For the transition-boiling regime, no sufficient theory has been derived.

This regime is between the maximum and minimum heat fluxes where [Ref. 23,25],

q"mxi = 0.U9hfgPv
°g(Pl-Pv)

1/4

(3.19)

9"Bän = 0.09pvhJjs
gv(Pi-pv)

(PI+PVY

1/4

(3.20)

By assuming a linear heat flux distribution in the transition boiling regime

(Figure 3.2), it can be written,

logfa"-) ~ logto"^) __ logfa") - logta"^)
Iog30-logl20 logAre-logl20

(3.21)

19

by arranging equation (3.21),

log ^ max

logfo")
" min)

log

(AT ~]

30

V120y

(3.22)

and the heat flux at a point in transition boiling regime can be found as

»_ inlos(?") q"=\0 (3.23)

logo",)

4
" max

>

4

\
H min

30 A7; 120 log(A7;)

Figure 3.2 Linear Distribution of Heat Flux in Transition Regime

d. Film Boiling Regime (A7; > 120°C)

In film boiling regime for flat horizontal surfaces, Westwater and Breen

recommended the following correlation for conduction heat transfer coefficient [Ref.23],

20

he = 0.59-
'g(p, -PJ)PX%S +0.68^ATJ

A//vA7e

1/4

(3.24)

where

^v = viscosity of the vapor, kg/ms
v = thermal conductivity of vapor, W/mK

cv = specific heat of saturated vapor, J/kgKand,

X-2n
g(Pl-Pv).

1/2

(3.25)

Bromley suggested combining conduction and radiation heat transfer coefficients

[Ref. 23],

htotal =hc+ 0.75 hr

where

hr =<JS,

' rjiA rp4 ^
* s * sat

T -T \xs x sat J

here

ss = surface emissivity

Ts = absolute surface temperature

and the resulting heat flux in this regime is found as

q"= htotai ATe

(3:26)

(3.27)

(3.28)

21

C. COEFFICIENTS USED IN THE EQUATIONS

The coefficients used deriving the discretised equations are as follows:

KA kA kA
n — e e n — w w

E ~~ Ä, aw ~ "^ UN SxpE öxjyp öy PN

kA. „ -k<A> „ _M* as=tr °T=ir a*--^r- tysp ten ozBp

a0p = PC~Äf ÜP = 6^£ + °W + °N +aS+aT+ ÜB)+ "I

he&cPE KäXwp
coeffe- — coeffw= M m

2ke + hedxPE 2kw + h^&Cwp

KfypN _«._ h,&sp coeffn = "-^ coeffs
IK+KfypN 2ks+hsSy^ s ' "susSP

coeffi= h'&" coeßb- A'&"
1kt + htdzpj 2kb + hbdzBP

fluxcoeffe = — flvxcoeffw - ^
2ke+heSxPE 2kw+hwäcwp

22

fliacoeffn = fypN

2kn+hnöyPN
fluxcoeffs = fysp

2ks+hsSysp

fluxcoefft =
dz PT

2k, + ht&PT
fluxcoeffb ■■

dz BP

2kb+hbSzBP

radcoeff = PT

2kt +htSzPT

D. DERIVATION OF THE EQUATIONS

The problem is governed by the equation

8T d
pc— = —

dt dx
f, dT} d k— + —

r
7 8T^
k—

v fyJ dz

r
78T^
k—

V dz j
(3.29)

1. Interior Nodes

r

N
...A ^

,s>
s-
j^\

w vyl ' L j E
p He j

*r^ .^ i-_^
u ̂ ^

s

I

U

3

Figure 3.3 Interior Nodes

23

Integration of equation (3.29) over the control volume and over a time interval from t to

t + At gives

1+&1 dT „., ,+i rd(,&T}„„ '+? cdf,dT^
JJ^*=J£*£**+J£* l cv , cvdx\ dx) f c

J
vdy{ dy

dVdt

f c{dz{ dz) (3.30)

This may be written as

\pc—dVdt- —\k— Adxdt+ —\k—
l CV t cv dx\ dx

Adydt

t+At

+ J }±U°"
l CV dz\ dz

Adzdt (3.31)

where A is the face area of the control volume and dx, dy, dz are the dimensions of the

control volume. Equation (3.31) may be written as

t+At n en

t+At

dT ,
pc—dt
^ dt

t+At

dV: kA
dT

dx
Vr
V dx

t+At

dt+ | kA
df]
dy

\

Jn

dt

M
dz

'kA*?
\ dz Jb

dt (3.32)

24

By assuming the grid point value of the temperature at a node to prevail over the whole

control volume, the left hand side of equation (3.32) can be written as

J
cv

t+At

j pc^dt^lV = pc(TP-T°)AV (3.33)

where Tp° refers to temperatures at time t and Tp refers to temperatures at time t + At.

By applying central differencing to the diffusion terms on the right hand side equation

(3.32) can be written as

P(TP-I°)AV= J K4?B Tp
5c, "PE J

KAw
T -T t+dt

Jt+j u% Tp
fy} PN J

T -T

&i SP J

it

r+Ä

+ KA T p

&> ■PT J

T -T

&, •BP J

it (3.34)

The values of TP,TE,TW,TN,TS,TT and TB vary with time. The time integral can be

calculated by using temperatures at time t or at time t + At or, a combination of

temperatures at time t and t + At. This approach may be generalized by defining a

weighting parameter 0 between 0 and 1.

t+Al

iT= \Tpdt = [eTp+(i-®)r°l\t (3.35)

25

In equation (3.35) for 0 =0 the temperature at time level t is used (Explicit scheme); for

0=0.5 the temperatures at t and t + Ataxe equally weighted (Crank-Nicholson scheme);

for 0=1 the temperature at time level t + At is used (Fully implicit scheme). By using

equation (3.35) and dividing Ar throughout, equation (3.34) may be arranged as

pc- fc-tf)
At

AV=S *A^-KA
(I^M+KA,^fM-kA<^M

Sx PE Sx, WP &. PN Sy. SP

+ k,A.
(TT-TP)

Sz
-KA.V'-™ vb^b

PT

0 rrO

Sz BP

0 rrO

+ (1-0) kA {Tz~T*]

Sx PE

,k^2lfSi+kmAmVL3l-k,ZLni
Sx WP %>PN &. SP

+ kA^Tr-Tp) ki (T?-T°)
KtAi Ö KbAb 7.

PT Sz BP
(3.36)

Equation (3.36) may be re-arranged as

&■

AV i efu . kA> ikA ikA i kA , M
At äcPE ö^p fyPN fysp &pT &t BP J

7L M [QTE

+(i_0)^]+M:[err+(i-0K]+M
cKfyp cyPN

PE

KA QTN+(^-®Kh^[®Ts+(l-®^}

+M[0rr+(1_0)7?]+M[07;+(1_0K
& PT &

+
BP

§>SP

AV (
pc (1-0)

At A
*A+KA
CKpE OC^p

K^Ji.^ K./L. K. A. KL Ak ■ n n . 5 s . t t . o b

8yPN SySP Sz PT SZBp j
T (3.37)

26

By putting the defined coefficients from the previous section, equation (3.37) may be

written as

[a°P + ®(aE+aw +aN+as +aT + aB)]rp = aE [®TE + (\-®)T°]

+ aw[®Tw+(l-®)T°]+aN{eTN+{l-e)r°]+as[®Ts+(\-®)rs
0}

+ aT [®TT + (l - ®)r°] + aB [®TB + (l - ®)T°]
+ [a°P -(\-®)(aE +aw +aN+as+aT + aB)]TP (3.38)

Finally, by grouping the known and the unknown terms at each side, the discretised

equation is found as

apTp -®aETE -®awTw -®aNTN -®asTs -®aTTT -®aBTB = (1-0)

[aET»E +awT» +aNT° +rf +«Ä° +aBT°]+[al ~(1-©)(** +aw
+ aN+as + aT+aB)]TP (3.39)

2. Left-Front-Top Corner

± _ _
N

—■ ^s-

F.

s
^i ra>^

W
/ S P e

A V ^
h ,-'

]

u

3

Figure 3.4 Left-Front-Top Corner

27

By using the same method from equations (3.30-3.33), equation (3.29) can be written as

/+A/ / rp rp jf. .TT-T.
PE J & KA-

TP-TW

V Sc, WP)

t+N

it+j KA
T -T lN XP

§>PK J

+ M,^-* &

f rp rp \

k„A h h

PT

vA^i & BP J

dt

WSP J

(3.40)

*

In equation (3.40), Tw and Ts take the value of equation (3.8) and Tr takes the value of

equation (3.6). By using these values and equation (3.35), we have

pc (
T

P
Tr\v = e

At o VE
1
P) c.

CKpE OXjyp

2kjrp+hwäcWPTai -q
n
w&.l WP

2K+K&WP

+M.(7;_7>)_
fypN fySP

2ksAs(rr 2ksTP+hsöySPTx-g"söy, rp _ —'S^P ' "$ VTSP*
1P

s "SSP

2K+hsfy. SP

+
2k,A,

Sz PT

2k,Tp +htdzPTT„ -g" &PT -as&PTT}

+ (1-0)
k.A

Sx

2k, + h,&

?k A (rE-rP)-^^

-TD
PT

KA b^b

ÖZ
(TP-TB)

BP

E ~lP
PE ÖX WP

T _
lP

2kJP+hwSxm,Tx-q"w&i

2K + K&wp

, k„An 0 _T0x_fMi
+ r. \2N 1P) P

VPN WS?

,„ 2k5T«P+hsdySPT„-q"söy, SP

2ks+h5Sy, S^VSP

+
2k,A,

8z PT

2ktTP +h,&PTTx -g"top&PT -GS&PTT}

2kt +htözPT

lP

J

ozBP

(3.41)

Equation (3.41) may be arranged as

28

AV
pc—+0-^- +

+

At

2k,A,

keAe 2kwAw

& PT y 2k, + ht&PT i

2k I w

V 2kw
+
K®

C
WPJ

| *„4 | 7kA L 2ks

fypN fysp I 2ks+hsfy, SPJ

KA
' & BP

L D —'
3c

[GTE +(l-®)T°E]+^[®TN +(l-0)7^]
PE &

+ ̂ k+d-0)i:]-
& BP

AV
pc— -Q-&i-S-± +
^ At ' '

KA , 2*w4
QkpE CKfl/p

PN

Ik I w

v 2kw +K®
C
WPJ

+ KA
fypN

+-
2k A

* SP

1 —
2k

2ks+hsSySP

\2*,V
& PT

1 —
2k,

v 2k, +h,&PT j
+ KA

& BP

rpQ
lP

+ 0
2kwAwfhwäcwpTx-q"wäcl

äc.

2ktA,

wp

2k +h äc„n, i
+ -

2kA

Sy.

& PT

h,&PTTa -g",op &PT -as&PTTf

2k, +h,dzPT

SP

4\

hsfyspT«-<l"söySP

2ks+hsSySP j

+ (1-0) 2«w^W

<Sc, WP 2kw + nvlax.wp j

2kA, (h.frJT„ -q\ dv,P\ 2*1,4 (K&rJ* ~4\op&PT-ae&PTT*

* SP V 2ks+hsfy isyysp j & PT V 2k, +h,& PT

(3-42)

Equation (3.42) may be re-arranged as

pc—+0 -J-L +
At

+

KA , 2v4

2k,A, (h,&i

@*P£ Ofcyff

"w"%7>

\2kv/+hJkWP j
. "-«4 , 2*;4

#w ^:

^ 5P

'äV ^SP v^+^^s?y

+

rtAjic*pj>

^[eTB+(i-®)it]+

KA
'BP.

TP =M[0r£+(i-0)^]+|4L[©7;+(i-0)^]
&, PE dyL PN

BP

AV
pc-—(1-0)
^ At

KA ! 2ftw4 AA WP

2£„,+/u&» 'P£ '-"'WP \^n-w^'lw'MWPj

j ^»4 j 2fty4

4W #SP

^ ^s/»

V2^+//5^s/,y
+

2*4
&, ,pr

h,&PT

2k, + h,&PT

KA
BP.

7?+0 2kwA

WP

K&wpT«, <fw&i WP

2kw + K&wp 2K + K&WP) fysp
+ 2*,4 4M Q"S%>sp \}KA

2ks+hsSySP 2ks+hsSy, SPJ & PT

29

h,özPTTx €top &PT OE&pjTp

v 2k, + h, &PT 2k, +ht&PT 2k, + h, dzPT j

q\ axt wp 2ksAs hsfySpT*

+ (1-0)

l"s %>SP

2M*
&c WP 2kw+hw&lvP

2kw+hw&WP) oySP [2ks+hsSySP 2ks+hsSy

<l"top &PT

2k, + h,dz

+ 2*,4
SP) & PT K2k, +hl&PT

PT

<JS5ZPTTP

2k, +h,SzPT j
(3.43)

By putting the defined coefficients from the previous section, equation (3.43) may be

arranged as

[a°P + ®[aE + 2aw (coeffw) + aN + 2as (coeffs) + 2aT {coeffi) + aB]]TP

= aE[®TE +(l-e)T°}+aN{QTN +(l-e)T°]+aB[®TB +(l-@)T°}
+ [a°P - (1 - ®)[aE + 2aw {coeffw) + aN + 2as (coeffs)

+ 2aT (coeffi) + aB Jr,0 + ®[2aw [(coeffw)Tx - (flwccoeffw)q\]
+ 2as [(coeffs)Ta - (fluxcoeffs)q"s]

+ 2aT [(coeffi)Ta - (fluxcoefft)q",op -(radcoefft)^]

+ (1 - ®)[2aw [(coeffw)Ta - (fluxcoeffw)q" w]

+ 2as [(coeffs)TK - (fluxcoeffs)q"s]

+ 2aT {(coeffi)^ - (fluxcoefft)q",op -(radcoefft)TP
A] (3.44)

by putting heat flux terms from equation (3.7), equation (3.42) may be written as

[a°P + e[aE + 2aw (coeffw) + aN+ 2a s (coeffs) + 2aT (coeffi) + aB]Jrp

= aE [®TE + (1 - ®)T°]+ aN [®TN + (1 - 0)7;°]+ aB [®TB + (1 - 0)7B°]

+ [a°P - (1 - G)[aE + 2aw (coeffw) + aN + 2as (coeffs)

+ 2aT (coeffi) + aB flr/ + [2aw (coeffw) +2as (coeffs) + 2aT (coefft)]Tx

- 2aw (fluxcoeffw)q"w-2as (fluxcoeffs)q" s -2aT (fluxcoefft)q",

30

• 2aT (fluxcoejft)q"source -2aT (fluxcoefft)q"boiling -2aT (radcoeff)Tp
4 (3.45)

and, the discretised equation may be written as

[a°P + ®[aE + 2aw (coeffw) +aN + 2as (coeffs) + 2aT (coeffi)+ aB fl7/p

- ®aETE - eaNTN - ®aBTB = (1 - ®)[aET° + aNT°N + aBT<B]

a°p - (1 - ®)[aE + 2aw (coeffw) + aN + 2as (coeffs) + 2aT (coeffi)+ aB]r,

2aw (coeffw) + 2as (coeffs)+ 2aT (coeffi)]Tx - 2aw (fluxcoeffw)q" w

- 2as (fluxcoeffs)q"s -2aT (fluxcoeß)q", -2aT (flwccoeffi)q" source

- 2aT (flwccoefft)q\oiling -2aT (radcoeff)TP (3.46)

3. Front-Left Edge

r

.. t__ .._._._
N

.,-''"' ^.-'■^

F

^ fiCs^
w

**■

^ s p e
A r _^..-'" ,-" u «,.-""'

I

u

1

Figure 3.5 Front-Left Edge

By using equations (3.28-3.31), equation (3.27) can be written as

31

r+Ä

pfrP-tW= J U5"5
<5c.

up w
■PE J ÖCfyp J.

it+\ u^ T -T

4i «v y

T -T
kAP s

* 5f y

*

/+A/

M,
T _r
-'r if

f

PT J

T -T ^

v & £/> /

* (3.47)

In equation (3.47), 7^ and Ts take the value of equation (3.8). By using these values

and equation (3.35), we have

pP' 7>°)AF=e|
Ar

kA

Sc
(TE-TP)~ IKMT KJr+hAmT.-<f*&i

PE &, WP
TP~

WP

2k
w+K&wp

2k A
+^-(TN-TPy

fypN WSP

2ksTp+hsfyspTx-<f'sSy; SP

' &
(TP-TB)

BP

+ (1-0)

2ks +hsfySP

(
7

P

&PT

KA ,JQ „p. 2£»A jo 2kvTP +K^WP^CO ~V"w Sx-wp

+ki^(TN-rP)-^
r

fypN WSP

CKpE CKfyp y

jo 2ksT?+hsfySPTx-q"sfySP

2ks +hsfySP

2kw +hw&m,

k.A, f"-t ST0 T'0\ ^b^b /"rO

&
<rr

0-r;> KAu

PT ÖZ
(rP-rB)

BP

(3.48)

Equation (3.48) may be arranged as

DC + 0
At

k»A„ ZK,„A„ e e , w v

OKpE ÜXyyp

2k.

2kw + KSxwp j
+ -

+ -
2k A. f

*. SP

1--
2k,

^ 2ks + hsSySP J SzpT öz
, k,A, kbAb

T 1" ■

BP

n n

fypN

_ keAe
lp ~

STY
PE ÖX

[0r£+(i-0)r£°]

32

+ ̂ - [®TN + (i - 8)7$]+£4- [©rr + (i - e)TT°]+M. [@rB + a _ ©^]
dyPN dZpj. dzBP

pc^--(l-&)
At

keAe 2kWA'W
. f

- +

+ -
2k A

Sy SP

(
- 1

V

(

2k

SxDr Sx

2k.

\ 2K + h„Sx, wuxWP J

fC„A„ n n

Zk,+K&sp

. K-A-t kbAb

(Ju p'p \JZi ryp

7>°+0

fypN

2kwAw ^aXjypT^ - q w Sx^,

Sx^ I 2kw + hdxv

2M. (KfyspT^-tf.fysp

+

fysp I 2ks+hs8ySP

2KAs(hsSySPTx-q"sSySP

Sy SP 2ks+hsSy ls^SP

+ (1-0)
2kwAw

wp V

Sx,

■w ' "v/^^WP

\
■WP

wp V 2K + KSx VI 'wuxWP J

(3.49)

Equation (3.49) may be re-arranged as

DC + 0
At

k.A. 2k A. e e _i_ w w h^OXwp

Sx PE Sxjyp y2kw + h^SXwp j

.knAn 2ksAs

. kfAt kbAb

Szpj. SzBP

T = lp
k.A.

fypN Sy

k*,-A.„

SP

KSy, syrsp

K2ks+hsSySPj

Sx
[®TE +(1-®)TE

0
]+^L[®TN +(1-0)7^]

PE Sy PN

fch-A-i,
+^-[®TT +(i-0)rr°]+-^^[©r5 + (i-0)rs°]+

Sz PT Sz BP

AV pc—-(l-®)
At

k.A.
Sx PE

2.KWA„

Sx, wp

f7wäxm>

\2kw +hwSxwp j

K~A„ LK.A. , n n , s s

SP SyPN Syt

KSy, s^SP

s2ks+hsSySPj

+ -L-L + -
U** DT* CK DD

T--0
LP

+ 0
f h..Sx^T w^^WP^x q\ Sx, w ^WP

V 2£w + "W"*W 2kw + h^SXwp j
+ -

2k A

Sy, SP

2ks+hsSySP)
+ (1-0)

Z/C„, A„

Sx, WP

hsSySPTx

\2ks+hsSySP

II c„ ^
 */ w OXjyp

\2kw + nwSxwp 2kw + h^SXwp y

h Sx T

+
2ksAs{ hsSySPTx

Sy, SP

q\ sy,
\

s "SSP

2ks+hsSySP 2ks+hsSySP

33

(3.50)

By putting the coefficients from the previous section, equation (3.50) may be written as

[a°P + ®[aE + 2aw (coeffw) +aN + 2a s (coeffs) + aT + aB Jr?

®TE + (1-®)T° + aN[®TN + (\-®)T°]+aT[®TT + (1-0)^°]

®TB + (\-®)T°}+[ap -(l-®)[aE + 2aw(coeffw)+aN

+ 2as(coeffs) + aT + aB^ + ®[2aw[(coeffw)Tx - (fluxcoeftyq" w]

+ 2as[(coeffs)Tx -(fluxcoeffs)q"'J+(1 -®)[2aw[(coeffw)TK -(fluxcoeffw)q"w]
+ 2as [(coeffs)^ -(fluxcoeffs)q" s J (3.51)

= a

+ a

Equation (3.51) may be arranged as

[ap1 + ®[aE + 2aw {coeffw) +aN + 2a s (coeffs) + aT + aB]Jrp

+ aN[®TN+(l-®)T°]+ar[®Tr+(l-®)TT°]

+ [a°p - (1 - ®)[aE + 2aw (coeffw) +aN

+ 2as (coeffs) + aT + aB JT/ + [2aw (coeffw) + 2a s (coeffs)]T„
- 2aw (fluxcoeffw)q\ -2a s (fluxcoeffs)q" s

= a

+ a

®TE+(1-®)T°

®TB + (1-®)T°

(3.52)

Finally, the discretised equation may be written as

[a°p + ®[aE + 2aw (coeffw) +aN + 2as (coeffs) + aT + aB]frP - ®aETE - ®aNTN

-®aTTT -®aBTB = (\-®)[aET« +aNT°N +aTTT° +aX]+[ai -0-®)k

+ 2aw (coeffw) + aN + 2as (coeffs) + aT + aB JT/ + \2aw (coeffw) + 2as (coeffs)^
- 2aw (fluxcoeffw)q\ -2a s (fluxcoeffs)q" s (3.53)

34

4. Bottom Face

w

T

 _*■

N

E
> ^

vA

s

s* P ^ e
/^r -^

Figure 3.6 Bottom Face

By using equation (3.30-3.33), equation (3.29) may be written as

t+t*

fc(TF--®&y= J k^--5
3c, PE J

(T —T ~\

^ tyvp J

t+öt ' r„-2^
">I4I c

#/>.

^ ^ ^A

V ^7w J

T -T xp xs

y Wsp j
u it

t+&i

k.A TT-^
A r

& w y
Ä (3.54)

In equation (3.54), TB takes the value of equation (3.8). By applying this and equation

(3.35) to equation (3.54), we have

At
KAe (TE -TP)-^(TP -TW) + ^{TN -TP)
Sx PE ÖX, wp Sy PN

35

öySP öz

+ (1-0)

2kU b-"-b

PT Öl BP

T -
2kbTp+hbözBPTm-q"bözBP

2kb+hbözBP j

\
X
E

1
P) - \1p~Iw) + ~7 ^w_ipJ_T \Ip~Is)

tew» qyPN öys öx PE

0 rrO

"■WP 'SP

{ k,At Q r0 2kbAb (Q 2^r,° + ^&^rM - q\ özBP \

°- 7 ° P 2kb+hh& öz PT ÖZ BP 'b^BP

(3.55)

Equation (3.55) may be arranged as

pc + ©
At

keAe ^ kwAw knAn ksAs ktAt 2kbAb

ox PE ÖX, wp

k.A.

öy

kA
PN öysp özpT öz BP

1 —
2h

2kb+hböy, BP J

ÖX
[®TE +(I-G)T°]+-£-?-[®TW +(i-0)r;]+^[©r, +(i-0)r„°]

PE ÖX, WP öy, PN

k.A, +^-[0r5+(i-0)rs
o]+^[0rr+(i-0)rr

o]+
öy, SP öz PT

pc—-(1-0)
At

k.A.
öx PE

kwAw | knAn ksAs ktAt 2kbA

öx

+ 0

• + • + + •
WP fypN fysP fcpT

■+■
ÖZ BP

2k,

2kbAb

öz BP

K&BPT«>-q"b&

2kb+hbözBP

BP + (1-0)
2kbAb

2kb + hböyBP)

ÖZ BP 2kb+hbözBP jj
(3.56)

Equation (3.56) may be re-arranged as

OC + 0
At

K.A. K„,A„, K„A„ K,A, K.A,

ÖX PE ÖX
■ + ■

WP fypN öy,
+- 2kbAb

SP öz PT ÖZ BP

hbözBP

>2kb +hbözBP ,

36

k.A. [®TE +(I-®)T°]+^[®TW +(I-&)T:]+-^[®TN +(i-0)r;]
<-PE VAWP

+^p-[®Ts +(i-0)rs°]+M-[0rr +(i-0)rr°]+

k^A

'FT

fypN

AV
pc=—-(l-®)

-w—w ■-„—„ -s—s , *fA . ^b-"-b &„A„ ICrAr

8x, WP fypN $>SP & PT & BP

hbdzBP

2kb+hbözBPj

At

T;+®

k.A.
8x

2kbAb

dz BP

K&BPT„ q\ & BP

2kb + hbözBP 2kb + hbdzBP j
+ (1-0)

2kbAb

dz BP

K&BPT«

2kb+hbSzBP

q\ dz BP

2kb+hb8zBPj

PE

(3.57)

By using the defined coefficients, equation (3.57) may be written as

[a°P + e[aE + aw +aN +as+aT + 2aB {coeffb)^P = <*E [®TE + (1 - ®)T°]

+ aw[®Tw + (l-®)T°}+aN[®TN + (l-®)T^]+as[®Ts + (1-0)7?]

+ aT [®TT + (1 - ®)T°] + [a°p - (1 - ®)[aE + aw +aN +as+aT + 2aB (coeffbj^T*

+ ®[2aB [((coeffl?)TK) - ((fluxcoeßb)q" b)]

+ (1 - ®)[2aB [{(coeffl>)Tj-((fluxcoeJ?b)q"b)] (3-58)

■^0
lp

And, the discretised equation may be written as

[a°p + ®[aE + aw +aN + as+aT + 2aB (coeffbj$Tp - ®aETE - ®awTw - ®aNTN

-®asTs -®aTTT = (1 -®)[aET° + awT« + aNT° + asTs° + aTTT°]+ [4

- (1 - ®)[aE +aw+aN+as+aT + 2a B (coeffb)^ + [2aB (coeffb)]Tx

-2aB{fluxcoefib)q\ (3-59)

The resulting discretised equations for the other parts of the workpiece are as follows

37

5. Left-Back-Top Corner

[a°p + ®[aE + 2a w (coeffw) + 2a N (coeffh) + as+ 2aT (coeffi) + aB^Tp- OaETE

-easTs -®aBTB = (1 -®)[aET° + asTs° + aBT°]+ [a°P -(1 -®)[aE + 2aw(coeffw)

+ 2a N (coeffh) + as+ 2aT (coeffi) + aB]TP + [2aw (coeffw) +2aN (coejfn)

+ 2aT (coej?t))rx - 2aw (fluxcoeffw)q" w -2aN (flvxceeffn)q\ ~2aT (flwccoefft)q"',

- 2aT (fluxcoeffi)q"source -2aT (flvxcoefft)q\oiling

- 2aT (radcoeff)Tp (3.60)

6. Right-Back-Top Corner jsjgni-uacK-1 op corner

[ap + S[2aE (coeffe) + aw + 2aN (coeffh) + as+ 2aT (coeffi) + aB J7> - ®awTw

-easTs -®aBTB = (\-®)[awT° +asTs° + aBT
Q

B]+[al - (I-®)[2aE (coeffe)

+ aw + 2a N (coejfn) + as + 2aT (coeffi) + aB]TP + \2aE (coeffe) +2aN (coeffh)

+ 2aT (coeffi)]Ta - 2aE (fluxcoeffe)q"e -2aN (fluxcoeffh)q\ -2aT (fluxcoeffi)q",

- 2aT (fluxcoeffi)q"smrce -2aT (fluxcoeffi)q"'Mllllg

- 2aT (radcoeff)Tp (3.61)

Right-Front-Top Corner

[a°p + ®[2aE (coeffe) + aw+aN+ 2as (coeffs) + 2aT (coeffi) + aBjr, - ®awTw

-®aNTN -®aBTB=(l-®)[awT° +aNT°N + aBTB°]+[a°p - (I-®)[2aE (coeffe)

+ aw +aN + 2as (coeffs) + 2aT (coeffi) + aB]TP + [2a E (coeffe) +2as (coeffs)

2aT (coeffi)^ - 2aE (fluxcoeffe)q"e -2as (fluxcoeffs)q"s -2aT (fluxcoefft)q",

- 2aT (fluxcoeffi)q"smrce-2aT (fluxcoeffi)q"'bt>aiHg

-2aT (radcoeff)Tp (3.62)

38

8. Left-Back-Bottom Corner

[a°p + ®[aE + 2aw {coeffw) + 2a N {coeffh) + as+aT+ 2aB{coeffb)^p - ®aETE

-®asTs -®aTTT = (1 - ®)[aET° + asTs° + aTTT°]+ [a°P - (1 - ®)[aE + 2aw{coeffw)

+ 2a N {coeffh) + as+aT+ 2aB (coeffbjfr?

+ \2aw {coeffw) +2aN {coeffh) + 2aB {coeffbj\Tx - 2aw {fluxcoeffw)q" w

- 2aN {fluxcoeffh)q\ -2aB {fluxcoeffb)q\ (3.63)

Right-Back-Bottom Corner

lw [a°p + ®[2aE {coeffe) + aw+ 2aN {coeffh) + as+aT+ 2aB {coeffb)fP - ®awTw

-®asTs -®aTTT = {l-®)[awT° +asTs + aTT°]+[a°p -{l-®)[2aE {coeffe)

+ aw+ 2a N {coeffh) + as+aT+ 2a B {coeffb)]rp

+ [2aE{coeffe) +2aN{coeffh)+ 2aB{coeffbj\Tco - 2aE{fluxcoeffe)q"e

- 2a N {fluxcoeffh)q"n -2a B {fluxcoeffb)q" b (3.64)

10. Left-Front-Bottom Corner

[ap + ®[aE + 2aw {coeffw) + aN+ 2as {coeffs) + aT+ 2aB {coeffb)\$TP - ®aETE

-®aNTN -®aTTT = {\-®)[aET° +aX +aTTT°]+[a°p - {I - ®)[a E+2aw {coeffw)

+ aN+ 2as {coeffs) + aT+ 2aB {coeffb)]rp

+ [2aw {coeffw) +2as {coeffs) + 2aB {coeffbj\Tx - 2aw {fluxcoeffw)q"w

- 2a s {fluxcoeffs)q"s -2a B {fluxcoeffb)q" b (3.65)

11. Right-Front-Bottom Corner

[a°p + ®[2aE{coeffe) + aw+aN+ 2as {coeffs) + aT+ 2aB{coeffb)\fP - ®awTw

- ®aNTN - ®aTTT = (1 -®)[awT° + aNT° + <*X]+ [4 - (1 - ®)[2aB{coeffe)

+ aw +aN+ 2a s {coeffs) + aT + 2a B {coeffb)]rp

+ [2aE {coeffe) +2as {coeffs) + 2aB {coeffb)^ - 2aE {flvxcoeffe)q\

-2as{fluxcoeffs)q"s+2aB{fluxcoeffb)q"b (3.66)

39

12. Top Face

[a°p +®[aE +aw+aN +as + 2aT(coefft) + aB^P -®aETE -®awTw

-GaNTN -®asTs -®aBTB =(\-<d)\aET°E +awT° +*X + rf + <vC]

+ [a°p - (1 - ©)[aE +aw+ aN +as+ 2aT (coefft) + aB])TP
0

+ [2aT (coefft)]Tx - 2aT (fluxcoefft)q", -2aT (fluxcoefft)q"source

- 2aT (ßuxcoeß)q"boiling -2aT (radcoeff)TP* (3.67)

13. Front Face

[a°p + e[aE +aw+aN+ 2as(coeffs) + aT + aB~§TP - ®aETE - ®awTw

- ®aJN - ®aTTT - ©aBTB = (1 -®)[aET° +awT°+ aNT° + aTTT° + aBT«B]

+ [a°p - (1 - ©)[aE +aw+aN+ 2as (coeffs) + aT+aB JT/

+ [2as(coeffs)Yx -2as(fluxcoeffs)q"s (3.68)

14. Back Face

[a°p + ®[aE +aw+ 2aN(coeffh) + as + aT + aB~§TP -®aETE - ®awTw

-®asTs -®aTTT -®aBTB = (\-®)[aET° + awT°+asTs°+aTTT°+aBT°]

+ [a°p - (1 - ©)[aE +aw+ 2aN (coeffn) + as + aT + aB JT/

+ [2aN(coeffh)]rx -2aN(fluxcoeffh)q\ (3.69)

15. Left-Lateral-Face

[a°p + ®[aE + 2aw (coeffw) + aN + as + aT + aB \jfp - ®aETE - ®aNTN

- ®asTs - ®aTTT -®aBTB = (1 - ®)[aET° + aNT° + asr5° + aTT* + aBTB]

+ [a°p - (1 - ®)[aE + 2aw (coeffw) + aN+as+ar+aB JT/

+ [2aw (coeffw)]Tx - 2aw (flwccoeffw)q\ (3.70)

40

16. Right-Lateral-Face

[a°p + ®[2aE (coeffe) + aw + aN + as + aT + aB^TP - ®awTw - ®aNTN

- ®asTs - ®aTTT - ®aBTB = (1 - ®)[awT° + aNT° + asTs° + aTTT° + aBT°B]

+ [a°p - (1 - ®)[2aE (coeffe) + aw + aN + as + aT +aB ^°

+ [2aE(coeffej\rx -2aE(fluxcoeffe)q"e (3.71)

17. Front-Top Edge

[a°p + ®[aE + aw+aN + 2as (coeffs) + 2aT (coeffi) + aB \$TP - ®aETE

-®awTw -®aNTN -®aBTB=(l-®)[aET° + awT° +asT*+aBT*\

+ [a °p - (1 - ®)[aE +aw+aN+ 2as (coeffs) + 2aT (coeffi) + aB Jrp
0

+ [2as (coeffs) + 2aT (coefft)]Tn - 2as (fluxcoeffs)q"s -2aT (fluxcoefft)q"t

- 2aT (fluxcoeffi)q"source -2aT (fluxcoefft)q" boiling

-2aT(radcoeff)TP
4 (3.72)

18. Front-Bottom Edge

[ap + ®[aE +aw+aN+ 2as (coeffs) + aT+ 2aB (coeffbj§Tp - ®aETE

- ®awTw - ®aNTN - ®aTTT = (1 - ®)[aET° + awT° + aNT° + aTT°]

+ [a°p - (1 - ®)[aE +aw+aN+ 2as (coeffs) + aT+ 2aB (coeffbj§T°p

+ [2as (coeffs) + 2aB (coeffb)]Tx

- 2a s (fluxcoeffs)q"s -2a B (fluxcoeffb)q" b (3.73)

19. Back-Top Edge

[a°p + ®[aE +aw+ 2aN (coeffn) + as+ 2aT (coeffi) + aB]j7> - ®aETE

-®awTw -®asTs -®aBTB = (1-0)^^° +awT° +asTs° +aBT°]

+ [a°p.- (1 - ®)[aE + aw + 2aN (coeffn) + as+ 2aT (coeffi) + aB JT/

+ [2aN (coeffn) + 2aT (coefft)]Tx - 2aN (fluxcoeffh)q"n -2aT (fluxcoeffi)q"\

- 2aT (fluxcoeffi)q"source -2aT (flvxcoefft)q\oüing -2aT (radcoeff)^ (3.74)

20. Back-Bottom Edge

[a°p + ®[aE + aw + 2a N(coeffii) + as+ar+ 2a B(coeffib)^Tp - ®aETE

-®awTw -®asTs -®aTTT = (\-®)[aET° + awT° + asTs° +aTTT°]

+ [a°p - (1 - ®)[aE +aw+ 2aN (coeffii) + as+aT+ 2aB (coejfb)^

+ [2a N (coeffii) + 2a B (coeJfb)]Tx

- 2a N (fluxcoeJfh)q"n -2a B (fluxcoeffib)q" b

21. Front-Right Edge

(3.75)

[a°p + ®[2aE (coejfe) + aw+aN+ 2a s (coeffs) + aT+aB^Tp- ®aw Tw

-®aNTN -®aTTT -®aBTB = (l-®)[awT° +aNT°N +aTTT° +aBT«B]

+ [a°p - (1 - ®)[2aE (coejfe) + aw+aN+ 2as (coeffs) + aT+aB JT/

+ [2a E (coejfe) + 2a s (coejfi)]Tx

- 2aE (fluxcoejfe)q"e -2a s (fluxcoeffs)q"s (3.76)

22. Back-Left Edge

[a°p + ®[aE + 2aw (coeffw) + 2aN (coeffii) + as + aT + aB J7> - ®aETE

- ®asTs - ®aTTT - ®aBTB = (1 - ®)[aET° + asTs° + aTTT° + aBT°]

+ [a°p - (1 - ®)[aE + 2aw (coejfw) + 2aN (coeffii) + as+aT+aB J7>°

+ [2aw (coejfw) + 2a N (coeffin)]Tx

- 2aw (fluxcoeffiw)q\ -2a N (jluxcoeffn)q\ (3.77)

23. Back-Right Edge

[a°p + ®\2aE (coejfe) + aw + 2aN (coeffii) + as + aT + aB §TP - ®awTw

-®asTs -®arTT -®aBTB =(\-®)[awT° +asTs°+aTTT° +aßrß°]

+ [aJ - (1 - ®)[2aE (coejfe) + aw+ 2aN (coeffn) + as+aT+aB ^

+ VaE (coeffe) + 2aN i.coejfh)]rx

- 2aE (fluxcoeffe)q\ -2aN (fluxcoeffii)q\ (3.78)

42

24. Left-Lateral-Top Edge

[a°P + ®[aE + 2aw (coeffw) + aN+as+ 2aT (coefft) + aB \^P - ®aETE

- ®aNTN - ®asTs - ®aBTB = (1 - ®)\aET°E + aNT° + <rf + aBT°B]

+ [a°p - (1 - ®)[aE + 2aw (coeffw) + aN+as+ 2aT {coefft) + aB Jrp
0

+ [2aw (coeffiv) + 2aT (coefft)]Tx - 2aw (fluxcoeffw)q" w -2aT (fluxcoeffi)q"t

- 2aT (fluxcoeffi)q"source-2aT (flwccoefft)q"boiling

-2aT(radcoeff)T* (3.79)

25. Left-Lateral-Bottom Edge

[a°p + ®[aE + 2aw (coeffw) + aN+as+aT + 2a B (coeffbj§TP - ®aETE

- ®aNTN - ®asTs - ®aTTT = (1 - ®)[aET° + aX + «rf + «rf]

+ [a I - (1 - ®)[aE + 2aw (coeffw) + aN+as+aT+ 2a B (coeffb)^°

+ [2aw (coeffw) + 2aB (coeffbj\Tx

- 2aw (flvxcoeffw)q\ -2aB (fluxcoeffb)q" b (3.80)

26. Right-Lateral-Top Edge

[a°p + ®[2aE (coeffe) + aw+aN+as+ 2aT (coefft) + aB jrp - ®awTw

- ®aNTN - ®asTs - ®aBTB = (1 - ®)[awT» + aNT°N + asTs° + aBT°B]

+ [a°p - (1 - ®)[2aE (coeffe) + aw+aN+as+ 2aT (coefft) + aB Jrp°

+ [2aE (coeffe) + 2aT (coefft)^ - 2aE (fluxcoeffe)q"e -2aT (fluxcoeffi)q"t

- 2aT (fluxcoefft)q"source-2aT (fluxcoeffi)q"boiling

-2aT(radcoeff)Tp
4 (3.81)

43

27. Right-Lateral-Bottom Edge

[a°p + ®[2aE (coeffe) + aw +aN+as+aT+ 2a B (coeffbj^- ®awTw

- ®aNTN - ®asTs - ®aTTT = (1 - ®)[awT° + aNT° + asTs° + aTTT°]

+ [a°p - (1 - ®)[2aE (coeffe) + aw + aN +as+aT+ 2aB (coeffbjfr?

+ [2a E (coeffe) + 2a B (coeffb)]Tx

- 2a E (fluxcoeffe)q"e -2a B (fluxcoeffb)q\ (3.82)

44

IV. RESULTS AND DISCUSSION

Results are presented for the different cases discussed in greater detail below. As

noted earlier, a variable sized and moving numerical mesh was used in such a way that

the arc was always positioned at the center of the mesh where the spacing is the finest.

The goal is to be able to resolve the large temperature gradient features around the arc

and yet not incur a large overhead of computer resources, which would be required, if the

grid was uniformly fine all over. This strategy however did require that a separate mesh

generating routine be used which did demand some extra computational resources. The

weld pool region was also modeled as a solid region but with a thermal conductivity

higher than the surrounding unmelted region to simulate the effects of weld pool

convection. The discontinuity in the thermal conductivity boundaries was handled using

the standard technique of employing harmonic averaging at the boundary. Since the

coefficients of the system of equations depend on the temperature, an iterative solution

technique was used to achieve convergence in such a way that the maximum temperature

difference between two consecutive iterations at any grid point was no more than 0.1 °C.

The numerical solution method was used to examine different cases in freshwater

for a 40-mm-thick 70 x 90 mm workpiece with a moving heat source in the positive y-

direction.

Case la:

The validity of the numerical model was compared to Rosenthal's three-

dimensional solution for a moving heat source. At this point, convective, radiative and

boiling surface thermal conditions were not considered. A constant thermal conductivity

45

value and a point heat source were used in the calculations. The input data used in

computations for case la are shown in Table 1. The calculations were made up to 3.6

seconds. The numerical results show excellent agreement with the analytical results of

Rosenthal (Figure 4.1 and Figure 4.2).

Workpiece : Length = 70 mm, Width = 90mm,
Water temperature: T=27°C (300.15 K)
Power input into workpiece : Q = 2544 W
Arc torch speed : vy = 4 mm/s
Radius of heat input distribution : r0 = 4.5 mm
Thermal conductivity : k = 53 W/m K
Density of steel: p = 7854 kg/m3

Specific heat of steel: Cp = 509.3 J/kgK

Thickness = 40mm

Table 1. The input data used in computations for case la

(a)

46

(b)

Figure 4.1 Rosenthal's point heat source solution:
(a) Profile; (b) Front-view.

(a)

47

7000

0.01 0.005 0 -0.005 -0.01
Distance from Torch Center (mm)

Figure 4.2

(b)

The numerical model point heat source solution:
(a) Profile; (b) Front-view.

Case lb :

In this case, the surface thermal boundary conditions of boiling heat transfer were

now included. Other relevant data is given in Table 2.

Workpiece : Length = 70 mm, Width = 90mm, Thickness - 40mm
Water temperature: T = 27°C (300.15 K)
Saturation temperature: T= 100 °C (373.15 K)
Water depth: l = 0ft
Total pressure: P = 101.325 kPa
Power input into workpiece : Q - 2544 W
Arc torch speed : vy = 4 mm/s
Radius of heat input distribution : r0 = 4.5 mm
Thermal conductivity ; k (W/m K)

53 - 0.04 (T-300) 300 < T(K) < 1000
25 + 6.25 x ia3(T-1000) 1000 < T(K) < 1800
125 T(K) > 1800

Emissivity : £ = 0.82

Table 2. The input data used in computations for case lb

48

The top surface temperature values at 0.5 seconds can be seen in Figure 4.3 and

Figure 4.4. At 0.5 seconds, the temperature distribution is almost symmetric about the

position of the arc. The temperature distribution around the arc center is above the

melting temperature of the workpiece (Tm = 1800 K). To see the depth of the weld pool

penetration, the melting temperature contours were plotted for different surfaces (Figure

4.5) and the weld pool depth was shown through the melting temperature points by using

a curve-fit (Figure 4.6). Because of the brief reaction time, the arc heat input penetration

to the workpiece is limited and a well-formed weld pool cannot be seen. [Ref. 16]

0.05

y-axis (m) -°DB -005 x-axis (m)

Figure 4.3 Top surface t=0.5 sec

49

3000

2500

-E-2000
m

5 1500

1000

500

 *r. i
i : :

ml
1 : :
i ' :

1 ML..;

 i i i_ - .1
0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -0.05

y-axis (m)

Figure 4.4 Top surface (profile) t=0.5 sec

x10

y-
axi
s
(m

-2

-5-4-3-2-1012345
x-axis (m) _xj£

Figure 4.5 The weld pool surface characteristics
by the T=1800 K contours t=0.5 sec

50

Figure 4.6 The weld pool (front-view) t=0.5 sec

At t = 2.0 sec, the results reveal that the temperature distribution has already

reached steady state. Due to the moving heat source, the small change of slope of the

temperature distribution curve can be observed clearly (Figure 4.7 and Figure 4.8).

Because of the increased reaction time, the melting temperature contours are seen till the

fourth surface from the top (Figure 4.9). The weld pool width increased to 8 mm and its

depth to 2.1 mm (Figure 4.10).

51

y-axis (m) -0-06 -005 x-axis (m)

0.05

Figure 4.7 Top surface t=2.0 sec

3000 r

Figure 4.8 Top surface (profile) t=2.0 sec

52

x10

y-
axi
s 0
(m

) -2

4

-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01
x-axis (m)

Figure 4.9 The weld pool surface characteristics
by the T=1800 K contours t=2.0sec

0.5

0

-0.5

?
E

N

-1.5

-2

-2.5
1-3-2-10123' *

x-axis (mm)

Figure 4.10 The weld pool (front-view) t=2.0 sec

53

At t= 4.5 sec, the change of slope of the temperature distribution behind the arc is

more evident in Figure 4.11 and Figure 4.12. The melting temperature contours are still

seen till the fourth surface from the top (Figure 4.13). But, the weld pool depth reached to

3 mm with a width of 8 mm (Figure 4.14). These results show a good agreement with the

data from Ref. 16.

y-axis (m) -006 -0.05

0.05

x-axis (m)

Figure 4.11 Top surface t=4.5 sec

54

Figure 4.12 Top surface (profile) t=4.5 sec

X10

y-

-o
(m
) -2

^=^

yjp^^
|_ |x^^n

t\ t / II
\^^/

-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01
x-axis (m)

Figure 4.13 The weld pool surface characteristics
by the T=1800 K contours t=4.5 sec

55

Figure 4.14 The weld pool (front-view) t=4.5sec

Case 2,3,4 :

In the following cases we do not consider the temperature distribution. Instead,

the cooling time that elapses between 800 °C and 500 °C is examined for freshwater at

different temperatures and welding depths. The input data used in calculations are shown

in Table 3, Table 4 and Table 5.

56

Workpiece : Length = 70 mm, Width = 90mm, Thickness = 40mm
Water temperature: T = 3 °C (276.15 K)
Saturation temperature : T= 114.88 °(Z (388.03 K)
Water depth : / = 22 ft (6.706 m)
Total Pressure : P = 168.75 kPa
Power input into workpiece : Q - -- 3900 W
Arc torch speed: vy = 2.75 mm/s
Radius of heat input distribution : r0 - = 4.5 mm
Thermal conductivity; Jc(W/mK)

53 - 0.04 (T-300) 300 < T(K) < 1000
25 + 6.25xl0-3(T-1000) 1000 < T(K) <1800
125 T(K) > 1800

Emissivity : S — 0.82

Table 3. The input data of calculations at T = 3 C and 1 = 22 ft

Workpiece : Length = 70 mm, Width = 90mm, Thickness = 40mm
Water temperature: T=10°C (283. 15 K)
Saturation temperature : T= 112.62 ° C (385.77 K)
Water depth : 1 = 18 ft (5.486 m)
Total Pressure : P = 156.492 kPa
Power input into workpiece : Q = 3900 W
Arc torch speed: vy = 2.75 mm/s
Radius of heat input distribution : r0 = 4.5 mm
Thermal conductivity; k (W/m K)

53 - 0.04 (T-300) 300 < T(K) < 1000
25 + 6.25xl0-3(T-1000) 1000 < T(K) < 1800
125 T(K) > 1800

Emissivity : S = 0.82

Table 4. The input data of calculations at T = 10 C and 1 = 18 ft.

57

Workpiece : Length = 70 mm, Width = 90mm, Thickness = 40mm
Water temperature: T= 31 °C (304.15 K)
Saturation temperature : T= 115.44 "C (388.59 K)
Water depth : / = 24 ft (7.315 m)
Total Pressure : P = 171.762 kPa
Power input into workpiece : Q = 3900 W
Arc torch speed : vy = 2.75 mm/s
Radius of heat input distribution : r0 = 4.5 mm
Thermal conductivity ; k (W/m K)

53 - 0.04 (T-300) 300 < T(K) < 1000
25 + 6.25 x 10'3(T-1000) 1000 < T(K) < 11800
125 T(K) > 1800

Emissivity : £ = 0.82

Table 5. The input data of calculations at T = 31 C and 1 = 24 ft.

The resulting graphs of the water temperature and welding depth effects on the

peak temperature and the cooling time (between 800 °C and 500 °C) for a point initially

1.25 mm. behind the arc heat source are shown in Figure 4.15, Figure 4.16 and Figure

4.17. The cooling times for 800 - 500 °C temperature range are 0.19 seconds(Twater=3

°C, 1=22 ft.), 0.20 seconds (Twater=10 °C, 1=18 ft.) and 0.33 seconds (Twater=31 °C, 1=24

ft.) respectively. These cooling times are significantly different from those in the previous

studies in the literature. Based on the models in this case, it is seen that boiling

phenomena must be considered for surface heat losses from the weld metal. For 800 °C

to 500 °C range of the weld metal, film boiling exists and the surface is completely

covered by a vapor blanket. A high amount of heat transfer from the weld metal to the

water environment occurs by conduction across the vapor film. The other reason is that

due to the thermal conductivity equations used in the model, for 800 °C to 500 °C

ranges, thermal conductivity of steel is low. This causes a decrease in conduction heat

58

transfer from the arc to the studied point. But the high convection heat loss at this point

causes a rapid cooling rate. Another possible reason is that because of the low welding

speed and the high thermal conductivity in the weld pool, the workpiece, which has a

large thermal capacity, absorbs most of the heat energy. After the arc has passed,

temperature and thermal conductivity at that point drops. Due to the low thermal

conductivity, the transfer of the absorbed heat energy from the inner part of the

workpiece to the surface is not sufficient compared to the surface heat loss. This causes a

rapid cooling rate on the surface.

During welding, the high heat input to the workpiece increases the degree of grain

growth. The grain coarsening effect causes a decrease in the grain boundary area.

Because of the large grain size and the very high cooling rates, the resulting phase is hard

with Vi > 450, but with a brittle martensitic structure.

T
em

pe
ra

tu
re

 (
C

)

8
8
8
8
8
8
8
8
8
8
?

\ N

\ >.

•

\
\
\

0.5 1 1.5 2 2.5
Time (seconds)

3

Figure 4.15 Cooling time and peak temperature for a point
initially 1.25 mm behind the arc heat source.
(TWater = 3 C, depth = 22 ft.)

59

5snn

T
em

pe
ra

tu
re

 (
C

)

C 0.5 1 1.5 2 2.5 :
Time (seconds)

Figure 4.16 Cooling time and peak temperature for a point
initially 1.25 mm behind the arc heat source.
(TWater= 10 C, depth = 18 ft.)

2500

2000

O 1500

I 1000

500

 \

 A,

3 4
Time (seconds)

Figure 4.17 Cooling time and peak temperature for a point
initially 1.25 mm behind the arc heat source.
(TWater= 31 C, depth = 24 ft.)

60

V. CONCLUSIONS AND RECOMMENDATIONS

Compared to experimental methods, numerical solution techniques are very fast,

effective and economical alternatives. Therefore, the aim of this study was to develop a

general numerical model for transient, three-dimensional conduction heat transfer

phenomena in underwater welding process on a thick rectangular plate. Computations

were presented for different cases. Comparisons of current predictions with results in the

literature showed good agreement and validated the model. If the material, environment

and the arc source properties are known, this program can be applied to the different

types of metals under the wet welding process.

The numerical model gave important temperature-time data in the critical HAZ,

which in turn determines material structure. The model also helped to make prediction of

size of weld pool and its evolution with time.

The principal recommendations for the future studies may be summarized as

follows.

1. The weld pool region itself was modeled, as a solid region. But, owing to
the presence of the temperature values higher than the melting temperature
in the weld pool, the model must be considered as a liquid weld pool with
the surrounding unmelted solid region. So, the numerical model needs to
be modified to account for weld pool convection with the buoyancy force,
the electromagnetic force and the surface tension gradient at the weld pool
surface.

2. The chemical effects due to interaction of the arc with the surrounding
water environment may need to be included.

3. In the model, boiling heat transfer phenomena was accounted for a solid
surface. For a molten pool region, the role of boiling on a liquid substrate
is unknown and needs to be solved.

61

62

APPENDIX A. PROGRAM STRUCTURE

In the main program <aathl0.m>, non-umform grid spacing was constructed by

using the exponential function y - he~bx where b is the coefficient which affects the grid

spacing distribution and h is the sum of the grid spacings when x -»<x>. The application

of grid spacing to the workpiece was shown in Figure Al.

Xi Xn X3

(a)

n3 , r
h2 ,

r

(b)

Figure Al Applying the grid spacing to the workpiece by using
the exponential function

63

The distance in front of the moving heat source was called as "front" and the

distance behind the heat source was called as "back". The width and the thickness of the

plate were defined with the same terms. The variable "number" was used to define the

number of grid points in the "back" region. Variables "b" and "number" can be changed

to control the resolution of the grid spacing.

To simulate the heat input from the arc to the top surface, it was assumed that the

arc source heat flux distribution had a Gaussian distribution on the top surface. The

applied arc heat source was defined as a matrix, which its size was equal to the size of the

top surface. The value of heat flux at each grid point was calculated by using the x-

coordinate and the y-coordinate of that point. The resulting arc heat source matrix was

applied to the top surface.

The discretised equations was represented by the matrix equation [A] X =b

where, [A] is the coefficient matrix, X is the column matrix of the unknown temperature

values of the grid points and b is the column matrix of the constants. In the coefficient

matrix, the coefficients of the studied grid and the neighboring grids were written to the

same row. An example for 5x5x2 workpiece was shown in Figure A2. In this example,

the coefficient matrix may be written as

cl c2 0 0 0 c6 0... c26...

cl c2 c3 0 0 0 c7 0... c27...

0 c2 c3 c4 0 0 0 0... c28...

0 0... c25. c45... c49 c50

64

\y\y\y\y\y\
V\

Figure A2 The example workpiece

Even the row number, the column number and the surface number were increased,

the maximum number of coefficients for each row does not exceed 7. This is for an

interior grid point of a workpiece with a surface number 3 or more. But, the increasing

size of the coefficient matrix increases the computing time and the required computing

memory and storage capacity. To prevent this problem, tridiagonal part of the general

matrix (Figure A3) which contains Tw, TP and TE coefficients was formed as a new ax3

matrix (a = row x column x surface). The coefficient values and TN, Ts, TT and TB

were also formed separately and called as <north>, <south>, <top> and <bottom>

matrices respectively. The size of each matrix is a x 1 (a = row x column x surface). The

constant values in the right side of the equation were called as <right> matrix.

65

Figure A3 The coefficient matrix

Beginning from the first surface, the function program <aasolvelO> solves the

matrix produced by the main program by using row-by-row iterative sweeping method.

The representation of row-by-row method was shown in Figure A4 [Ref. 21,22]. The

statements <indexl> and <index2> defines the first and the last element of each row.

-O- -6
W

-0

4 ■o -o

-0- -0- -0- 0-

• Points at which values are calculated

o Points at which values are considered
to be temporarily known

■ Known boundary values

—► Sweeping direction

Figure A4 Row-by-row method representation

66

The matrix <temp_old> represents the old temperature values of the grid points.

At first, it was initialized and then it took the values of the previous iteration. The matrix

<temp> represents the temperature values of the grid points, which were found from the

present iteration. The sizes of <temp_old> and <temp> are (a x b) x c, where a, b and c

are the total row number, column number and surface number respectively. The statement

<delta_iteration> represents the absolute value of the difference between <temp_old> and

<temp>. If <delta_iteration> is less 0.1, the resulting temperature value is satisfactory.

The statement <count_iteration> counts the iteration number. If the program can not

converge after 10 iterations, <delta_iteration> increases 0.1 and continues to increase 0.1

at every following 5 iterations until the program find a converged temperature value. The

radiation heat flux matrix <radiationl> and the boiling heat flux matrix <q_boiling_free>

are only used to calculate the heat flux from the top surface.. The sizes of <radiationl>

and <q_boiling_free> are (a x b) x 1, where a, b are the total row number and column

number respectively.

In the <aasolvel0> function program, <north>, <south>, <top> and <bottom>

matrices were passed to the right side of the equation. Their values were calculated by

using the temperature values from the previous iterations and the resulting values were

added to the values of <right>. The diagonal matrix was solved by using Gauss

elimination method and the values of Tw, TP and TE was found for the present iteration.

In the <old_templ0> function program, it was assumed that the plane was moving

with the arc source together (Figure A5). Here, due to the non-uniform grid spacing, it

was necessary to determine the new position and the temperature value of each grid point

by using second degree polynomial enterpolation (Figure A6). The values of Ta, Tb and

67

Tc were found by using the old temperatures from the previous time step. These

temperatures was used to determine the new grid temperature Tx with the second degree

polynomial enterpolation.

Tx Ta T2

Ax

• A

 •

• A

 • T~

• A

t

Figure A5 Moving plane

(1—■ «

T •

> II

T5

0 ■ i ► ii

T3

Tx
T '■a ^-r

'' Tc Ts T9

Ax Ax Ax

(a) (b)

Figure A6 Grid positioning by using second degree polynomial

68

The function program <save_alllO> saves all 3-D temperature data at each time

step by overwriting onto. The other function program <save_thelO> saves top surface

temperatures at each time step into a different file name.

69

70

APPENDIX B. PROGRAM CODES

THE MAIN PROGRAM (aathlO.m)

% Need to define the function below to be able to use mcc
% The symbol "al" itself has no significance - aathlO is the
% name of the main program,
function [al]=aathlO()

clear % clear all variables - not present in "aathlOgoon.m"
close all % close all open figure windows

% save_me is a counter that is incremented after each time step
% and is used to decide how often to save the calc temperature
% data.
save_me=0;

% save_counter is a counter that is also incremented with each
% time step and is appended to the file name into which the temp
% data is stored.
save_counter=0; % not present in "aathlOgoon.m"

% Tinf is the ambient temp in deg C
Tinf=27;

% TO is the initial temp in deg C
T0=27;

% sil is the stefan-boltzmann const (SI units)
sil=5.67E-8;

% epsilon is the emissivity of the surface
epsilon=0;

% x-vel component of torch speed (m/s)
vel_x=0;

% y-vel component of torch speed (m/s)
vel_y=0.004;

% deltat_t is the time step (in sees)
delta_t=0.001;

% Distance source moves in the x-direction in each time step(in m)
deltax=vel x*delta t;

% Distance source moves in the y-direction in each time step (in m)
deltay=vel_y*delta_t;

% q_up is the heat flux distribution on the upper surface (W/mÄ2)

71

% q_up is the heat flux distribution on the upper surface (W/mA2)
% imposed by the torch/arc (implemented in matrix form)
q_up=0;

%% q is a generic variable representing heat flux that may be
%% present at any of the other surfaces and can be included
%% in the nodal equations

% q_ is constant heat flux through the surfaces
q_west=0;
q_east=0;
q_top=0;
q_bottom=0;
q_north=0;
q_south=0;

% c is the cp [J/kg-K]
c=509.3;

% ro is the density [kg/mA3]
ro=7 854;

% Convection heat transfer coefficients from the faces [W/mA2-K]
he=0;
hw=0
hn=0
hs=0
ht=0
hb=0

% The distances between the grid point points

%% back is the portion of the moving grid behind the point
%% of location of the source [in m]
back=.05;

% b is the coefft in the exponential gridding function (eA(-b*x))
b=.13;

% number is the no. of grid points in the "back" region
number=20;

%% Variables "b" and "number" above can be varied to control the
%% features of the variable grid, such as change in grid spacing,
%% etc.
%% height is a vector that holds the coords of the grid points in
the back-region. Note that the spacing between these grid
%% points is the diff. between consecutive height entries and is
%% stored in "int_back"
height(1)=0;

72

% Note that int_back(l) > int_back(number), i.e. in reverse order
for kk=l:number

height(kk+l)=back*(1-exp(-b*kk));
int_back(kk)=height(kk+1)-height(kk) ;

end

%% multiply is a scaling factor(close to 1) that scales height and
%% int_back in such a way that it height(number) = back.
multiply=back/(sum(int_back)-int_back(l)/2)
int_back=multiply*int_back;

%% Similar to back, below are the variables front (front region of %%
%% moving grid ahead of source), width (width of plate) and
%% thickness. All distances in m.
front=0.02;
width=0.09;
thickness=0.04;

%% int_front is the grid spacing in the front region. Initially
%% set to 0. Then transfer from int-back one by one until sum of
%% int-front entries exceeds front.
int_front=0;
counter=0;

while (sum(int_front)-int_front(length(int front))/2)<=front

% int_front below continually changes size as the spacings are
% added.
int_front=[int_front,int_back(length(int_back)-counter)] ;
counter=counter+l;

end

% Set first member which was initially 0 to null.
% Meaningful spacing starts only from the 2nd member of int_front
int front(!)=[];

%% The grid distance matrix in the y direction is y_intl starting
%% from the top of front down through the source all the way to
%% the bottom of back.
% fliplr is to ge the desired ordering from front to back.
y_intl=[fliplr(int_front),fliplr(int_back)];

% int_side holds grid spacing values over the width.
% Same logic as for int_front
int_side=0;
counter=0;

while (sum(int_side)-int_side(length(int_side))/2)<=(width/2)

73

int_side=[int_side,int_back(length(int_back)-counter)];
counter=counter+l;

end

int side (!) = [];

'% The grid distance vector in the x dirextion is x_intl (y_intl
% above.
x_intl=[fliplr(int_side),int_side];

% The grid distance vector in the z dirextion is z_intl (y_intl
% above)
z_intl=0;

counter=0;

while (sum(z_intl)-z_intl(length(z_intl))12) <=thickness

z_intl=[z_intl,int_back(length(int_back)-counter)];
counter=counter+l;

end

z_intl(!)=[];

figure(1)

subplot(3,1,1)
plot(x_intl)
grid on

subplot(3,1,2)
plot(y_intl)
grid on

subplot(3,1,3)
plot(z_intl)
grid on

% row is the number of y nodes (along the length).
row = length(y_intl)-1;

% col is the no. of x-nodes (across the plate width),
col = length(x_intl)-1;

% surface is the no. of z-nodes (across the thickness),
surface = length(z intl)-l;

74

% The value of teta determines the numerical scheme as follows:

% for Fully Implicit Method; teta=l
% for Crank-Nicholson Method; teta=0.5
% for Explicit Method; teta=0

teta=l;

% For a a*b*c three dimensional matrix,
% a:num rows, b:num cols, c:num surfaces.
% Size of new > (a*b*c)*3 TP, TE, TW coefficients for the
% whole grids.
% Size of top > (a*b*c)*l TT coefficients for the whole

.% grids.
% size of bottom —> (a*b*c)*l TB coefficients for the
% whole grids.
% size of north > (a*b*c)*1 TN coefficients for the whole
% grids.
% size of south > (a*b*c)*l TS coefficients for the whole
% grids.
% size of right > (a*b*c)*1 The values of the righthandside
% of the matrix.
% size of temp > (a*b)*c The temperatures of the grids.

% new is the coefft matrix for all the grid points in the 3-D
% volume.

% 1st col holds the coeffts of the West (W) nodes.
% 2nd col holds the coeffts of the (P) nodes.
% 3rd col holds the coeffts of the East (E) nodes.
new=zeros(row*col*surface, 3) ;

% right is the const (or b-vector) on the RHS
right=zeros(row*col*surface, 1) ;

%% south, north, top, bottom hold the coeffts of the corresponding %%
grid points.
south=right;
north=right;
top=right;
bottom=right ;

% Apply the initial condition to the plate.
% "temp" is the temperature matrix.

% temp is a matrix that holds temperature values for each surface.
% Note dimensions of temp carefully.
% This initialization is not present "aathlOgoon.m".
temp=TO*ones(row*surface, col);

75

% Below are parameters that specify the heat/arc source.
% rO is the effective radius [m] of the gaussian heat source.
r0=0.0045;

% ddd is a coefft that determines the gaussian spread.
% The larger the ddd value, the more pointed the source.
ddd=3;

% qrate_total is the total energy transfer rate from the source
% [Watts] .
qrate_total = 254 4;

% qO is the peak heat flux of the gaussian [W/m~2]
qO=qrate_total*ddd/pi/rOA2;

% Calculate the q_up (heat flux distribution on the top face)
%% xcenter and ycenter are the grid element numbers of the grid
%% center at which the source/arc is located.
xcenter=length(int_side);
ycenter=length(int_front);

for nn=l:row
for mm=l:col

% x(mm) is array with the x-coords of the mesh,
if mm < xcenter

x (mm) =-sum(x_intl ((mm+.l) : xcenter)) ;
elseif mm==xcenter

x(mm)=0;
else

x(mm)=sum(x_intl((xcenter+1):mm));
end

% y(mm) is array with the y-coords of the mesh,
if nn < ycenter

y(nn)=sum(y_intl((nn+1):ycenter)) ;
elseif nn==ycenter

y(nn)=0;
else

y(nn)=-sum(y_intl((ycenter+1):nn)) ;
end

% initialize q_up using x() and y() coord info.
q_up(nn,mm)=-qO*exp(-ddd*(x(mm)~2+y(nn)A2)/rOA2);

end
end
figure

% a mesh command to view the generated grid,
mesh(x, y,q_up)

76

for time=delta_t:delta_t:200
% 200 is the final time in sees upto which the program should
% go...

save_me=save_me+l;

disp('the interpolation time is ')
tic % beginning of tic-toe loop

[temp]=old_templ0(row,col,surface,temp,x,y,deltax,deltay) ;

toe % end of tic-toe loop.

% figure
% contour(x,y,temp(1:row,1:col))

disp('The matrix formation time is :')

tic % beginning of tic-toe loop.

%% Start to form the matrix by defining every point.
% Beginning of creation of coefft matrix
% loops step through each point on all the surfaces, cols and rows

for kk=l:surface
for jj=l:row
for ii=l:col

% The distances between the reference point and the adjoining
% nodal points.

% Distance between P&E and P&W
xpe=x_intl(ii+1) ;
xwp=x_intl(ii);

% Distance between P&N and P&S
ypn=y_intl(jj);
ysp=y_intl(jj+l);

% Distance between P&T and P&B '
zpt=z_intl(kk);
zbp=z_intl(kk+l) ;

%% The lateral surface areas of the faces of the control volume
%% around the reference point.P.

% East-face area.
Ae=(ypn/2+ysp/2)*(zpt/2+zbp/2);
Aw=Ae;

77

% North-face area.
An=(xpe/2+xwp/2)*(zpt/2 + zbp/2) ;
As=An;
% Top-face area.
At=(xpe/2+xwp/2)*(ypn/2+ysp/2);
Ab=At;

% The size of the control volume.

deltaV=(xpe/2+xwp/2)*(ypn/2+ysp/2)*(zpt/2+zbp/2);

% Routine to set thermal conductivities below:

% Initialize TEMP()s to 0 for logical ifs below:
TEMP(1)=0;TEMP(2)=0;TEMP(3)=0;TEMP(4)=0;TEMP(5)=0; TEMP(6)=0;

% TP0 is the temperature of the current node.
TP0=temp((kk-l)*row+jj,ii);

% T_west=TEMP(l) T_east=TEMP(2) T_north=TEMP(3)
% T_south=TEMP(4) T_top=TEMP(5) T bottom=TEMP(6)

if ii==l % first col, no west neighbor, so...
TEMP(1)=TP0; % set T_west to TP0

elseif ii==col % last col, no east neighbor, so.
TEMP(2)=TP0; % set T_east to TP0

end

if jj—1
TEMP(3)=TP0;

elseif jj==row
TEMP(4)=TP0;

end

if kk==l
TEMP{5)=TP0;

elseif kk==surface
TEMP(6)=TP0;

end

%% If current node P has a valid neighbor, then use temperature
%% of that node....

if (TEMP(1)==0)
TEMP(l)=temp((kk-1)*row+jj,ii-1);

end

78

if (TEMP(2)==0)
TEMP(2)=temp((kk-1)*row+jj , ii+1) ;

end

if (TEMP(3)==0)
TEMP(3)=temp((kk-1)*row+jj-1, ii) ;

end

if (TEMP(4)==0)
TEMP(4)=temp((kk-1)*row+jj+1,ii);

end

if (TEMP(5)==0)
TEMP(5)=temp((kk-2)*row+jj,ii);

end

if (TEMP(6)==0)
TEMP(6)=temp(kk*row+jj,ii) ;

end

% Do loop to calculate k-values of all grid points,
for kjl=l:6

% Now set the thermal conductivity values.

kelvin=TP0+273.15;
kl=53; % nominal kl-value in W/m-K set here, but....

% Actual kl-values are calc below.
if (kelvin>=300 & kelvin<1000)

kl=53-0.04*(kelvin-300);
elseif (kelvin>=1000 & kelvin<1800)

kl=25+6.25E-3*(kelvin-1000);
elseif kelvin>=1800

kl=125;
end

% Find the thermal conductivity at the adjacent point.
kelvin=TEMP(kj1)+273.15;
k2=53; % nominal k2-value in W/m-K set here, but....

% Actual k2-values of neighbors calc here.
if (ke'lvin>=300 & kelvin<1000)

k2=53-0.04*(kelvin-300);
elseif (kelvin>=1000 & kelvin<1800)

k2=25+6.25E-3*(kelvin-1000);
elseif kelvin>=1800

k2=125;
end

79

% Harmonie mean thermal conductivity found next
NEW_K(kjl) = 2*kl*k2/(kl+k2);

end

% Now redefine k's of the neighboring faces with values from NEW K
kw=NEW_K(1)
ke=NEW_K(2)
kn=NEW_K(3)
ks=NEW_K(4)
kt=NEW_K(5)
kb=NEW_K(6)

% Coefficients used in developing the discretised equations.
ae=ke*Ae/xpe;
aw=kw*Aw/xwp;
an=kn*An/ypn;
as=ks*As/ysp;
at=kt*At/zpt;
ab=kb*Ab/zbp;
apO=ro*c*deltaV/delta_t;
ap=teta*(ae+aw+an+as+at+ab)+apO;

% Coefficients used for the wall-medium interface part of the
% discretised equations.
coeffe=he*xpe/(2*ke+he*xpe);
coeffw=hw*xwp/(2*kw+hw*xwp);
coeffn=hn*ypn/(2*kn+hn*ypn);
coeffs=hs*ysp/(2*ks+hs*ysp);
coefft=ht*zpt/(2*kt+ht*zpt);
coeffb=hb*zbp/(2*kb+hb*zbp);

% Coefficients used for the heat flux part of the discretised
% equations.

fluxcoeffe=xpe/(2*ke+he*xpe);
fluxcoeffw=xwp/(2*kw+hw*xwp);
fluxcoeffn=ypn/(2*kn+hn*ypn);
fluxcoeffs=ysp/(2*ks+hs*ysp);
fluxcoefft=zpt/(2*kt+ht*zpt);
fluxcoeffb=zbp/(2*kb+hb*zbp);

% Radiation coefft for surface b.c. - see thesis...
radcoeff=sil*epsilon*zpt/(2*kt+ht*zpt);

% row_num is the index of the current point in the matrices being %
used. row_num varies from 1:surface*col*row
row_num=(kk-l)*row*col+(jj-1)*col+ii;

% For left-back-top corner

if ((kk==l) & (jj==l) & (ii==l))

80

% Temperature values for current time step for each relevant node.
TP0=temp((kk-1)*row+jj,ii) ;
TE0=temp((kk-1)*row+jj,ii+1) ;
TS0=temp((kk-1)*row+jj+l,ii) ;
TBO=temp(kk*row+jj,ii) ;

% Coeffts of grid points; note south and bottom later are moved to
% the rhs. ■
% "new" is the A-matrix in the solution.
% Note teta is the parameter which determines the numerical method
% teta=l:fully implicit; teta=0:explicit; teta=0.5:Crank-Nicholson
new(row_num,2)=apO+teta*(ae+2*aw*coeffw+2*an*coeffn+as+2*at*coefft+ab);
new(row_num,3)=-teta*ae;
south(row_num,1)=teta*as;
bottom(row_num,1)=teta*ab;

% "right" is the constant b-matrix on the rhs...
right(row_num,1)=(1-teta)*(ae*TE0+as*TS0+ab*TB0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+2*at*coefft+ab))*TP0+ ...
(2*aw*coeffw+2*an*coeffn+2*at*coefft)*Tinf -

2*at*fluxcoefft*q_up(jj,ii) ...
-2*aw*fluxcoeffw*q_west-2*an*fluxcoeffn*q_north-2*at*fluxcoefft*q_top;

%% radiation & q_boiling_coeff belong to the rhs but are not included
%% until later since they depend on the current temperature

% (a form of quasi-linearization of nonlinear temp terms)
radiation(row_num,l)=-2*at*radcoeff;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

% for right-back-top corner

elseif ((kk==l) & (jj==l) & (ii==col))

TP0=temp((kk-1)*row+jj,ii);
TW0=temp((kk-1)*row+jj , ii-1) ;
TS0=temp((kk-1)*row+jj+1, ii) ;
TBO=temp(kk*row+jj, ii) ;

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+2*an*coeffn'+as+2*at*coefft+ab);
new(row_num,1)=-teta*aw;
south(row_num,l)=teta*as;
bottom(row_num,l)=teta*ab;

right(row_num,l)=(l-teta)*(aw*TW0+as*TS0+ab*TB0)+ ...
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+2*at*coefft+ab))*TP0+

(2*ae*coeffe+2*an*coeffn+2*at*coefft)*Tinf-
2*at*fluxcoefft*q_up(jj , ii)...

-2*ae*fluxcoeffe*q east-2*an*fluxcoeffn*q north-

2*at*fluxcoefft*q_top;
radiation(row_num,1)=-2*at*radcoeff;

. 81

q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

% for left-front-top corner

elseif ((kk==l) & (jj==row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TN0=temp((kk-1)*row+jj-1,ii);
TB0=temp(kk*row+j j,ii);

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+an+2*as*coeffs+2*at*coefft+ab);
new(row_num, 3)=-teta*ae;
north(row_num,1)=teta*an;
bottom(row_num,l)=teta*ab;

right(row_num,1)=(1-teta)*(ae*TE0+an*TN0+ab*TB0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+2*at*coefft+ab))*TP0+ ...
(2*aw*coeffw+2*as*coeffs+2*at*coefft)*Tinf-2*at*fluxcoefft*q_up(jj,ii)

-2*aw*fluxcoeffw*q_west-2*as*fluxcoeffs*q_south-2*at*fluxcoefft*q_top;
radiation(row_num,1)=-2*at*radcoeff;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

% for right-front-top corner

elseif ((kk==l) & (jj==row) & (ii==col))

TP0=temp((kk-1)*row+jj, ii);
TW0=temp((kk-1)*row+jj, ii-1) ;
TN0=temp((kk-1)*row+jj-1, ii) ;
TB0=temp(kk*row+j j,ii);

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+2*at*coefft+ab);
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
bottom(row_num,1)=teta*ab;

right(row_num,1)=(1-teta)*(aw+TW0+an+TN0+ab*TB0)+ ...
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+2*at*coefft+ab))*TP0+

(2*ae*coeffe +2*as*coeffs +2*at*coefft)*Tinf-
2*at*fluxcoefft*q_up {j j, ii)

-2*ae*fluxcoeffe*q_east-2*as*fluxcoeffs*q_south-
2*at*fluxcoefft*q_top;
radiation(row_num,1)=-2*at*radcoeff;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

82

% for left-back-bottom corner

elseif ((kk==surface) & (jj==l) & (ii==l))

TP0=temp((kk-1)*row+jj, ii);
TE0=temp((kk-1)*row+jj, ii+1) ;
TS0=temp((kk-1)*row+jj+1, ii) ;
TT0=temp((kk-2)*row+jj,ii) ;

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+2*an*coeffn+as+at+2*ab*coeffb) ;
new(row_num,3)=-teta*ae;
south(row_num,l)=teta*as;
top(row_num,1)=teta*at;

right(row_num,1)=(1-teta)*(ae*TE0+as*TS0+at*TT0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+at+2*ab*coeffb))*TP0+ ...
(2*aw*coeffw+2*an*coeffn+2*ab*coeffb)*Tinf ...
-2*aw*fluxcoeffw*q_west-2*an*fluxcoeffn*q_north-

2*ab*fluxcoeffb*q_bottom;

% for right-back-bottom corner

elseif ((kk==surface) & (jj==l) & (ii==col))

TP0=temp((kk-1)*row+jj,ii);
TW0=temp((kk-1)*row+jj,ii-1) ;
TS0=temp((kk-1)*row+jj+1, ii) ;
TT0=temp((kk-2)*row+jj , ii) ;

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+2*an*coeffn+as+at+2*ab*coeffb) ;
new(row_num,l)=-teta*aw;
south(row_num,l)=teta*as;
top(row_num,1)=teta*at;

right(row_num,1)=(1-teta)*(aw*TW0+as*TS0+at*TT0)+ ...
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+at+2*ab*coeffb))*TP0+

(2*ae*coeffe+2*an*coeffn+2*ab*coeffb)*Tinf ...
-2*ae*fluxcoeffe*q_east-2*an*fluxcoeffn*q_north-

2*ab*fluxcoeffb*q_bottom;

% for left-front-bottom corner

elseif ((kk==surface) & (jj==row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii) ;
TE0=temp((kk-1)*row+jj , ii+1) ,•
TN0=temp((kk-1)*row+jj-l,ii) ;
TT0=temp((kk-2)*row+jj,ii) ;

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+an+2*as*coeffs+at+2*ab*coeffb) ;
new(row num,3)=-teta*ae;

83

north(row_num,1)=teta*an;
top(row_num,1)=teta*at;

right(row_num,l) = (l-teta)*(ae*TE0+an+TN0+at*TT0)+ . . .
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+at+2*ab*coeffb))*TP0+
(2*aw*coeffw+2*as*coeffs+2*ab*coeffb)*Tinf ...
-2*aw*fluxcoeffw*q_west-2*as*fluxcoeffs*q_south-

2*ab*fluxcoeffb*q_bottorn;

% for right-front-bottom corner

elseif ((kk==surface) & (jj==row) & (ii==col))

TP0=temp((kk-1)*row+jj,ii);
TW0=temp((kk-1)*row+jj,ii-1);
TN0=temp((kk-1)*row+jj-1,ii);
TT0=temp((kk-2)*row+j j,ii);

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+at+2*ab*coeffb);
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
top(row_num,1)=teta*at;

right(row_num,1) = (1-teta)*(aw*TW0+an*TN0+at*TT0)+ . . .
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+at+2*ab*coeffb))*TP0+

(2*ae*coeffe +2*as*coeffs +2*ab*coeffb)*Tinf ...
-2*ae*fluxcoeffe*q_east-2*as*fluxcoeffs*q_south-

2*ab*fluxcoeffb*q_bottom;

% for the top surface

elseif ((kk==l) & (jj>l) & (jj<row) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)+row+jj , ii + 1) ;
TW0=temp((kk-1)*row+jj, ii-1);
TN0=temp((kk-1)*row+jj-1,ii);
TSQ=temp((kk-1)*row+jj+1, ii) ;
TB0=temp(kk*row+jj, ii) ;

new(row_num,2)=apO+teta*(ae+aw+an+as + 2*at*coefft+ab) ;
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
bottom(row_num,1)=teta*ab;

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TN0+as*TS0+ab*TB0)+ ...
(apO-(1-teta)*(ae+aw+an+as+2*at*coefft+ab))*TP0 + 2*at*coefft*Tinf -

2*at*fluxcoefft*q_up(jj,ii)-2*at*fluxcoefft*q_top;

84

radiation(row_num,1)=-2*at*radcoeff;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

for the bottom surface

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii>l) & (ii<coi;

TP0=temp((kk-l)'*row+jj,ii) ;
TE0=temp((kk-1)*row+jj , ii+1)
TW0=temp((kk-1)*row+jj,ii-l)
TN0=temp((kk-1)*row+jj-1, ii)
TS0=temp((kk-1)*row+jj+1, ii)
TT0=temp((kk-2)*row+jj,ii) ;

new(row_num,2)=apO+teta*(ae+aw+an+as+at+2*ab*coeffb);
new(row_num,3)=-teta*ae;
new(row_num,l)=-teta*aw;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TNO+as*TSO+at*TTO)+ ...
(apO-(1-teta)*(ae+aw+an+as+at+2*ab*coeffb))*TP0 + 2*ab*coeffb*Tinf

2*ab*fluxcoeffb*q_bottom;

% for the front surface

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TW0=temp((kk-1)*row+jj, ii-1) ;
TN0=temp((kk-1)*row+jj-1, ii) ;
TT0=temp((kk-2)*row+jj,ii) ;
TBO=temp(kk*row+jj,ii) ;

new(row_num,2)=apO+teta*(ae+aw+an+2*as*coeffs+at+ab);
new(row_num,3)=-teta*ae;
new(row_num,l)=-teta*aw;
north(row_num,l)=teta*an;
top(row_num,1)=teta*at;
bottom(row_num,1)=teta*ab;

right(row_num,l)=(1-teta)*(ae*TEO+aw*TW0+an*TNO+at*TTO+ab*TBO)+ ...
(apO-(1-teta)*(ae+aw+an+2*as*coeffs+at+ab))*TP0 + 2*as*coeffs*Tinf

2*as*fluxcoef fs*q_so.uth;

% for the back surface

elseif ((kk>l) & (kk<surface) & (jj==l) & (ii>l) & (ii<col))

85

TPO=temp((kk-1)*row+jj,ii) ;
TEO=temp((kk-1)*row+jj, ii + 1) ;
TWO=temp((kk-1)*row+jj , ii-1);
TSO=temp((kk-1)*row+jj + 1, ii) ;
TTO=temp((kk-2)*row+jj,ii) ;
TBO=temp(kk*row+j j,ii);

new(row_num,2)=ap0+teta*(ae+aw+2*an*coeffn+as+at+ab);
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;
bottom(row_num,l)=teta*ab;

right(row_num,l)=(l-teta)*(ae*TE0+aw*TW0+as*TS0+at*TT0+ab*TB0)+ ...
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+at+ab))*TP0 + 2*an*coeffn*Tinf

2*an*fluxcoeffn*q_north;

% for the left-lateral surface

elseif ((kk>l) & (kk<surface) & (jj>l) & (jj<row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TN0=temp((kk-1)*row+jj-1,ii);
TS0=temp((kk-1)*row+jj+1,ii);
TT0=temp((kk-2)*row+jj,ii);
TB0=temp(kk*row+jj,ii);

new(row_num,2)=apO+teta*(ae+2*aw*coeffw+an+as+at+ab);
new(row_num,3)=-teta*ae;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;
bottom(row_num,1)=teta*ab;

right(row_num,1)=(1-teta)*(ae*TE0+an*TN0+as*TS0+at*TT0+ab*TB0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+an+as+at+ab))*TP0 + 2*aw*coeffw*Tinf

2*aw*fluxcoeffw*q_west;

% for the right-lateral surface

elseif ((kk>l) & (kk<surface) & (jj>l) & (jj<row) & (ii==col))

TP0=temp((kk-1)*row+jj, ii) ;
TW0=temp((kk-1)*row+jj , ii-1);
TN0=temp((kk-1)*row+jj-1,ii) ;
TS0=temp((kk-1)*row+jj+1,ii);
TT0=temp((kk-2)*row+jj,ii);
TB0=temp(kk*row+jj,ii);

86

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+at+ab);
new(row_num,1)=-teta*aw;
north(row_num,l)=teta*an;
south(row_num,l)=teta*as;
top(row_num,1)=teta*at;
bottom(row_num,l)=teta*ab;

right(row_num,1)=(1-teta)*(aw*TW0+an*TN0+as*TS0+at*TT0+ab*TB0)+ ...
(apO-(1-teta)*(2*ae*coeffe+aw+an+as+at+ab))*TP0 + 2*ae*coeffe*Tinf

2*ae*fluxcoeffe*q_east;

% for the front-top edge

elseif ((kk==l) & (jj==row) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1) ;
TW0=temp((kk-1)*row+jj,ii-1);
TN0=temp((kk-1)*row+jj-1,ii);
TBO=temp(kk*row+jj,ii) ;

new(row_num,2)=apO+teta*(ae+aw+an+2*as*coeffs+2*at*coefft+ab);
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
bottom(row_num, 1)=teta*ab;

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TN0+ab*TB0)+ ...
(apO-(1-teta)*(ae+aw+an+2*as*coeffs+2*at*coefft+ab))*TP0 + ...
(2*as*coeffs+2*at*coefft)*Tinf - 2*as*fluxcoeffs*q_south-

2*at*fluxcoefft*q_top ...
-2*at*fluxcoefft*q_up{jj,ii);

radiation(row_num,1)=-2*at*radcoeff;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

% for the front-bottom edge

elseif ((kk==surface) & (jj==row) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj , ii+1);
TW0=temp((kk-1)*row+jj , ii-1);
TN0=temp((kk-1)*row+jj-1,ii);
TT0=temp((kk-2)*row+jj , ii);

new(row_num,2)=ap0+teta*(ae+aw+an+2*as*coeffs+at+2*ab*coeffb)
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;

north(row_num,l)=teta*an;
top(row_num,l)=teta*at;

87

right(row_num,l) = (l-teta)*(ae*TEO+aw*TWO+an*TNO+at*TTO)+ . . .
(apO-(l-teta)*(ae+aw+an+2*as*coeffs+at+2*ab*coeffb))*TPO +
(2*as*coeffs+2*ab*coeffb)*Tinf - 2*as*fluxcoeffs*q_south-

2*ab*fluxcoeffb*q_bottom;

% for the back-top edge

elseif ((kk==l) & (jj==l) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TW0=temp((kk-1)*row+jj,ii-1);
TS0=temp((kk-1)*row+jj + 1, ii);
TBO=temp(kk*row+jj,ii);

new(row_num,2)=ap0+teta*(ae+aw+2*an*coeffn+as+2*at*coefft+ab) ;
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
south(row_num, 1)=teta*as;
bottom(row_num,1)=teta*ab;

right(row_num, l) = (l-teta)*(ae*TE0+aw*TW0+as*TS0+ab*TB0)+ ...
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+2*at*coefft+ab))*TP0 + ..
(2*an*coeffn+2*at*coefft)*Tinf - 2*an*fluxcoeffn+q_north-

2*at*fluxcoefft*q_top...
-2*at*fluxcoefft*q_up(jj,ii);

radiation(row_num,1)=-2*at*radcoeff ;
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft;

% for the back-bottom edge

elseif ((kk==surface) & (jj==l) & (ii>l) & (ii<col))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TW0=temp((kk-1)*row+jj,ii-1);
TS0=temp((kk-1)*row+jj+1,ii);
TT0=temp((kk-2)*row+jj,ii);

new(row_num,2)=apO+teta*(ae+aw+2*an*coeffn+as + at + 2*ab*coeffb) ;
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
south(row_num,l)=teta*as;
top(row_num,l)=teta*at;

right(row_num,1) = (1-teta)*(ae*TEO+aw*TW0+as*TS0 + at*TTO)+ . . .
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+at+2*ab*coeffb))*TP0 + ..
(2*an*coeffn+2*ab*coeffb)*Tinf - 2*an*fluxcoeffn*q_north-

2*ab*fluxcoeffb*q bottom;

% for the front-left edge

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TN0=temp((kk-1)*row+jj-l,ii);
TT0=temp((kk-2)*row+jj,ii);
TB0=temp(kk*row+j j,ii);

new(row_num,2)=ap0+teta* (ae+2*aw.*coeffw+an+2*as*coeffs+at+ab) ;
new(row_num,3)=-teta*ae;
north(row_num, 1)=teta*an;
top(row__num,1)=teta*at;
bottom(row_num,1)=teta*ab;

right(row_num, l) = (l-teta)*(ae*TE0+an*TN0+at*TT0+ab*TB0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+at+ab))*TP0 + ..
(2*aw*coeffw+2*as*coeffs)*Tinf - 2*aw*fluxcoeffw*q_west-

2*as*fluxcoeffs*q south;

% for the front-right edge

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii==col))

TP0=temp((kk-1)*row+j j,ii);
TW0=temp((kk-1)*row+jj,ii-1);
TN0=temp((kk-1)*row+jj-l,ii);
TT0=temp((kk-2)*row+jj,ii);
TBO=.temp(kk*row+j j,ii) ;

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+at+ab);
new(row_num, l)=-te'ta*aw;
north(row_num,l)=teta*an;
top(row_num,l)=teta*at;
bottom(row_num,l)=teta*ab;

right(row_num,1)=(1-teta)*(aw*TW0+an*TN0+at*TT0+ab*TB0)+ ...
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+at+ab))*TP0 + ..
(2*ae*coeffe+2*as*coeffs)*Tinf - 2*ae*fluxcoeffe*q_east-

2*as*fluxcoeffs*q south;

% for the back-left edge

elseif ((kk>l) & (kk<surface) & (jj==l) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj , ii+1) ;
TS0=temp((kk-1)*row+jj+l,ii);
TT0=temp((kk-2)*row+jj , ii) ;
TBO=temp(kk*row+jj,ii);

89

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+2*an*coeffn+as+at+ab);
new(row_num,3)=-teta*ae;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;
bottom(row_num,1)=teta*ab;

right(row_num,l) = (l-teta)*(ae*TEO+as*TSO + at*TTO+ab*TB0)+ . . .
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+at+ab))*TP0 + ..
(2*aw*coeffw+2*an*coeffn)*Tinf -2*aw*fluxcoeffw*q_west-

2*an*fluxcoeffn*q_north;

% for the back-right edge

elseif ((kk>l) & (kk<surface) & (jj==D & (ii==col))

TP0=temp((kk-1)*row+jj, ii);
TW0=temp((kk-1)*row+jj, ii-1) ;
TS0=temp((kk-1)*row+jj+1,ii);
TT0=temp((kk-2)*row+jj,ii);
TBO=temp(kk*row+jj, ii);

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+2*an*coeffn+as+at+ab);
new(row_num,1)=-teta*aw;
south(row_num, 1)=teta*as;
top'(row_num, 1) =teta*at;
bottom(row_num,1)=teta*ab;

right(row_num,l) = (l-teta)*(aw*TW0 + as*TS0 + at*TT0 + ab*TB0)+ . . .
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+at+ab))*TP0 + ..
(2*ae*coeffe+2*an*coeffn)*Tinf - 2*ae*fluxcoeffe*q_east-

2*an*fluxcoeffn*q_north;

% for the left-lateral-top edge

elseif ((kk==l) & (jj>l) & (jj<row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1);
TN0=temp((kk-1)*row+jj-1,ii);
TS0=temp((kk-1)*row+jj+1,ii);
TBO=temp(kk*row+jj,ii);

new(row_num,2)=apO+teta*(ae+2*aw*coeffw+an+as+2*at*coefft+ab);
new(row_num,3)=-teta*ae;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
bottom(row_num,1)=teta*ab;

right(row_num,l)=(l-teta)*(ae*TE0+an*TN0+as*TS0+ab*TB0)+ ...
(apO-(1-teta)*(ae+2*aw*coeffw+an+as+2*at*coefft+ab))*TP0 + ...
(2*aw*coeffw+2*at*coefft)*Tinf - 2*aw*fluxcoeffw*q_west-

2*at*fluxcoefft*q_top...
-2*at*fluxcoefft*q_up(jj,ii);

90

radiation(row_num,1)=-2*at*radcoeff ;
q boiling_coeff(row_num,l)=-2*at*fluxcoefft;

% for the left-lateral-bottom edge

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii==l))

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj,ii+1) ;
TN0=temp((kk-1)*row+jj-1,ii) ;
TS0=temp((kk-1)*row+jj+1,ii);
TT0=temp((kk-2)*row+jj,ii);

new(row_num,2)=ap0+teta* (ae+2*aw*coeffw+an+as+at+2*ab*coeffb);
new(row_num,3)=-teta*ae;
north(row_num,l)=teta*an;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;

right(row_num,1)=(l-teta)*(ae*TE0+an*TN0+as*TS0+at*TT0)+ ...
(apO-(l-teta)*(ae+2*aw*coeffw+an+as+at+2*ab*coeffb))*TP0 + ..
(2*aw*coeffw+2*ab*coeffb)*Tinf - 2*aw*fluxcoeffw*q_west-

2*ab*fluxcoeffb*q_bottom;

% for the right-lateral-top edge

elseif ((kk==l) & (jj>l) & (jj<row) & (ii==col)

TP0=temp((kk-1)*row+jj,ii);
TW0=temp((kk-1)*row+jj,ii-1);
TN0=temp((kk-1)*row+jj-1,ii);
TS0=temp((kk-1)*row+jj+1,ii);
TB0=temp(kk*row+j j,ii);

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+2*at*coefft+ab);
new(row_num, l)=-teta*aw;
north(row_num,l)=teta*an;
south(row_num,1)=teta*as,•
bottom(row_num,l)=teta*ab;

right(row_num,1) = (1-teta)*(aw*TW0+an*TN0+as*TS0+ab*TB0)+ . . .
(apO-(l-teta)*(2*ae*coeffe+aw+an+as+2*at*coefft+ab))*TP0 + ..
(2*ae*coeffe+2*at*coefft)*Tinf - 2*ae*fluxcoeffe*q_east-

2*at*fluxcoefft*q_top...
-2*at*fluxcoefft*q_up(jj,ii);

radiation(row_num,1)=-2*at*radcoeff;
q boiling coeff(row num,l)=-2*at*fluxcoefft;

% for the right-lateral-bottom edge

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii==col)

91

TPO=temp((kk-1)*row+jj,ii);
TWO=temp((kk-1)*row+jj, ii-1);
TNO=temp((kk-1)*row+jj-1, ii) ;
TSO=temp((kk-1)*row+jj + 1, ii) ;
TTO=temp((kk-2)*row+jj,ii) ;

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+at+2*ab*coeffb)
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;

right(row_num, l) = (l-teta)*(aw*TW0+an*TN0+as*TS0+at*TT0)+ . . .
(apO-(1-teta)*(2*ae*coeffe+aw+an+as+at+2*ab*coeffb))*TP0 + .
(2*ae*coeffe+2*ab*coeffb)*Tinf - 2*ae*fluxcoeffe*q_east-

2*ab*fluxcoeffb*q_bottom;

% for the interior nodes
%% as expected, note that the interior node has all of its neighbors
%% contributing to the coefft matrices
else

TP0=temp((kk-1)*row+jj,ii);
TE0=temp((kk-1)*row+jj , ii + 1) ;
TW0=temp((kk-1)*row+jj,ii-1);
TN0=temp((kk-1)*row+jj-1, ii) ;
TS0=temp((kk-1)*row+jj+1, ii);
TT0=temp((kk-2)*row+jj,ii) ;
TBO=temp(kk*row+jj,ii);

new(row_num,2)=ap;
new(row_num,3)=-teta*ae;
new(row_num,1)=-teta*aw;
north(row_num,1)=teta*an;
south(row_num,1)=teta*as;
top(row_num,1)=teta*at;
bottom(row_nurn,1)=teta*ab;

right(row_num,l)=(l-teta)*(ae*TE0+aw*TW0+an*TN0+as*TS0+at*TT0+ab*TB0)+

(apO-(1-teta)* (ae+aw+an+as+at+ab))*TP0;

end % the "end" of if loop to decide where node is located...

end % the "end" of loop for ii= ...(cols)

end % the "end" of loop for jj= .. . (rows)

end % the "end" of loop for kk= ...(surfaces)

toe % end of tic-toe loop

92

%% solve the matrix and find the new temperatures by using the
"aasolvelO.m"
%% function - row-by-row sweeping iterations from surface to surface

[temp]=aasolvelO(row,col,surface,new,right,north,south,top,bottom,

temp,radiation,q_boiling_coeff,Tinf,x_intl,y_intl,x,y);

% print the maximum temp in the entire 3-d grid
max(max(temp))

%% save the row number, column_number, surface number, time and
temperature
%% in every iteration

save_me % print value of save_me counter

% time_step_interval is the freq at which to save temp data
time_step_interval=l;

if (save_me/time_step_interval) == fix(save_me/time_step_interval)

%% save_counter is used in "save_thelO.m" function to apend to file-
name
%% in which temp data is being saved

save_counter=save_counter+l;

% save_thelO saves top-surface temp at each time-step into a diff file
name

save_thelO(row,col,surface,time,temp(l:row,l:col),save_counter,b,x, y) ;

%% save_alllO saves all 3-d temp data at each time-step by overwriting
onto
%% the same file name - imp for restarting the iterations...

save_alllO(number,time,temp,b,delta_t,back,front,width,thickness,save_c
ounter,save_me);

end

num_milli_secs=500; % freq at which to save all 3-d temp data
for aa=l:20

if (round(save_me)==round(num_milli_secs*aa))
save_thelO(row,col,surface,time,temp,save_counter,b,x,y);

end

end

end

93

% THE FUNCTION PROGRAM (aasolve 10.m)

% this program solves the matrix produced by the main program
% by using iterative sweeping method.
%

function [temp] = aasolvelO(row,col,surface,new,right,north,south,top,

bottom,temp,radiation,q_boiling_coeff,Tinf,x_intl,y_intl,x,y);

% for a a*b*c three dimensional matrix,
%
% size of new > (a*b*c)*3 TP, TE, TW coefficients for the
% whole grids
% size of top > (a*b*c)*l TT coefficients for the whole grids
% size of bottom —> (a*b*c)*l TB coefficients for the whole grids
% size of north > (a*b*c)*l TN coefficients for the whole grids
% size of south > (a*b*c)*l TS coefficients for the whole grids
% size of right > (a*b*c)*l The values of the righthandside of
% the matrix
% size of temp. > (a*b)*c The temperatures of the grids
% size of radiation —> (a*b)*l The radiation coefficients
% size of q_boiling_coeff —> (a*b)*l The boiling and free
% convection heat fluxes from the top surface

% initialize the temp_old, temp_old is the old temperatures of the
% grid points. It is used to compare the temperatures before and after
% the iterations. If the difference is less than 0.1, the iteration
% is enough.

temp_old=temp+100*ones(size(temp));

it_num=0;
temp_saturation=100;

delta_iteration=0.1;
count_iteration=0;

while max(max(abs(temp_old-temp))) > delta_iteration

count_iteration = count_iteration+l;

if count_iteration>delta_iteration*50+5

delta_iteration=delta_iteration+0.1

end

max(max(abs(temp_old-temp)))

it_num=it_num+l % iteration number

94

disp(max(max(temp))
temp_old=temp;

The variables of the boiling regimes

g=9.81;
csf=0.0132;
ne=l;
hfg=2257E3;
ro_l=957.85;
ro_v=0.6;
surface_tension=58.9E-3;
Prandtl=1.75;
miw_l=2.775E-4;
miw_v=12.02E-6;
cpl=4211;
cpv=2029;
epsi_s=0.82;
k_liq=0.682;
k_vap=0.024 9;
alpha_l=0.169E-6;
T_sat=100;
T_liquid=27;
sigma s=5.67E-8;

pisi_pisi=zeros(row,col);

% start the iterations

for cz=l:surface % for the surfaces

for cy=l:row % for the rows

indexl=(cz-1)*row*col+(cy-1)*col+l;
index2=(cz-1)*row*col+cy*col;

newl=new(indexl:index2,:);
topl=top(indexl:index2,1);
bottoml=bottom(indexl:index2,1);
northl=north(indexl:index2,1)
southl=south(indexl:index2,1)
rightl=right(indexl:index2,1)
radiationl=zeros(length(indexl:index2),1);
q_boiling_free=zeros(length(indexl:index2) , 1);

for cx=l:col % for the columns

95

% multiply the coefficients by the temperatures

if cz==l

qqqq=0; % heat flux to the outside because of boiling or free
convection

% The radiation heat flux from the top surface

radiationl(1:col,1)=radiation(((cy-
1)*col+l) : (cy*col),1).*(temp(cy,cx)A4) ;
radiationl(ex,1)=radiation((cy-1)*col+cx,1)*(temp(cy,ex)A4) ;

% The boiling or free convection heat flux from the top surface

delta_temp = temp(cy,ex) - temp_saturation;

if (delta_temp<=5)

% Rayleigh number

T_film=(temp(cy,cx)+Tinf)/2+273.15;
g=9.81;
beta=-0.000000017 937*(T_filmA2)+0.0000188*T_film-0.0037515;
alpha=-1.875E-12*(T_filmA2)+1.5525E-9*T_film-1.4995E-7;
nu=l.125E-10*(T_filmA2)-8.285E-8*T_film+1.5584E-5;
kconduc=-0.000008125*(T_filmA2)+0.00637 7 5*T_film-0.568 95;

% characteristic length L
% The free convection coefficient will be found for a 1*1 m2 area

L=l/4;

Ra=abs(g*beta*(temp(cy,ex)-Tinf)*(LA3)/(nu*alpha));

if Ra<16

Nusselt=l;

else

if (Ra<=lE7)
Nusselt=0.54*(realpow(Ra,0.25));

else
Nusselt=0.15*(realpow(Ra,(1/3)));

end

end

h_boiling=Nusselt*kconduc/L;

96

q_boiling_free(cx,1)=q_boiling_coeff((cy-1)*col+cx, 1)*. .
h_boiling*(temp(cy,ex)-Tinf);

qqqq=h_boiling*(temp(cy,ex)-Tinf);

end

if (delta_temp>5 & delta_temp<=30)

q_prime_s=miw_l*hfg*sqrt(g*(ro_l-ro_v)/surface_tension)* . .
(cpl*delta_temp/csf/hfg/PrandtlAne)A3;

tau=pi/3*sqrt(2*pi)*sqrt(surface_tension/g/(ro_l-ro_v))*. .
(realpow(abs(ro_vA2/surface_tension/g/(ro_l-

ro_v)),0.25));

q_boiling_free(ex, 1)=q_boiling_coeff((cy-
1)*col+cx,1)*q_prime_s*...

(l+(2*k_liq*(T_sat-T_liquid)/...
sqrt(pi*alpha_l*tau))*24/(pi*hfg*ro_v)*. . .
realpow(abs(ro_vA2/surface_tension/g/(ro_l-

ro_v)),.25));

qqqq=q_prime_s*...
(l+(2*k_liq*(T_sat-T_liquid)/...
sqrt(pi*alpha_l*tau))*24/(pi*hfg*ro_v)*...
realpow(abs(ro_vA2/surface_tension/g/(ro_l-

ro v)),.25));

end

if (delta_temp>30 & delta_temp<=120)

q_max=0.14 9*hfg*ro_v*realpow(abs(surface_tension*g*(ro_l-
ro_v)/ro_vA2),0.25);

q_min=0.09*ro_v*hfg*realpow(abs(surface_tension*g*(ro_l-ro_v)/. . .
(ro_l+ro_v)A2),0.25);

1
log_q=logl0(q_max/q_min)/loglO(30/120)*loglO(delta_temp/120)+logl0(q_mi
n);
q_boiling_free(ex,1)=q_boiling_coeff((cy-1)*col+cx, 1)*10A(log_q) ;
qqqq=10A(log_q);
end

if (delta_temp>120)
lambda=2*pi*realpow(abs(surface_tension/g/(rd 1-ro v)),0.5);

97

h_conduct=0.59*realpow(abs(g*(ro_lro_v)*ro_v*k vapA3*. .
(hfg+0.68*cpv*delta_temp)/(lambda*miw_v*delta_temp)),.25);

h_radiate=sigma_s*epsi_s*(((temp(cy, ex))A4-(T_sat) "4)/. . .
(temp(cy,ex)-T_sat));

h_boiling=h_conduct+0.75*h_radiate;

q_boiling_free(cx,1)=q_boiling_coeff((cy-1)*col+cx, 1)* . .
h_boiling*(temp(cy, ex)-Tinf);

qqqq=h_boiling*(temp(cy,ex)-Tinf);
end

pisi_pisi(cy,cx)=qqqq;
end

if cz>l
topi(ex,l)=topl(ex,1)*temp((cz-2)*row+cy,cx);

end

if cz<surface
bottoml(ex,1)=bottoml(ex,1)*temp(cz*row+cy,ex);

end

if cy>l
northl(ex,l)=northl(ex,1)*temp((cz-1)*row+cy-l,ex);

end

if cy<row
southl(ex,l)=southl(ex,1)*temp((cz-1)*row+cy+l,ex);

end

end

% indexl...index2 shows the rows in the new matrix that the
% calculations are done

if cz==l

right1(l:col,l)=rightl(l:col,1)+radiationl(l:col,1)+q_boiling_free(l:co
1,1);

end

right1(1:col,1)=rightl(1:col,1)+northl(1:col,1) ...
+southl(l:col,l)+topl(l:col,l)+bottoml(l:col,l);

98

% solve the diagonal matrix by using Gauss elimination method

for i=l:col-l;
newl(i,3)=newl(i,3)/newl(i,2);
right1(i,1)=rightl(i,1)/newl(i,2);
newl(i,2)=1;

newl(i+l,2)=newl(i+l,2)-newl(i+l,l)*newl(i,3);
rightl(i+1,1)=rightl(i+1,1)-rightl(i,1)*newl(i+1,1);
newl(i+1,1)=0;

end

rightl(col,1)=rightl(col,1)/newl(col,2);
newl(col,2)=1;

for i=col:-l:2
rightl(i-1,l)=rightl(i-1,1)-rightl(i,1)*newl(i-l,3);
newl(i-l,3)=0;

end

% The calculation is over, update the temperature matrix for the new
values

temp((cz-1)*row+cy,:)=rightl(l:col, :) ' ;

end

end

end

% figure
% mesh(x,y,pisi_pisi);
% pisi_pisi

% title('heat')

99

% THE FUNCTION PROGRAM (oldjemp 10.m)

%% The function program (old_templO.m) finds out the new positions of
%% the moving grid points at the new time step and the old temperature
%% values of the new grid points by using second degree polynomial
%% enterpolation.

function [temp]=old_templO(row,col,surface,temp,x,y,deltax,deltay);

%% This (for) loop finds out the x-coordinates of the new area where
%% the grid points move after the time delta_t.

for forl=l:col

new pos x(l,forl)=x(1,forl)+deltax;

count = 1;

while ((x(l,count) < new_pos_x(1,forl)) & (count<col+10))

if count==col
count=col+20; % There was "break" command here before,

end

count=count+l;
end

if count>=col+20
count=col;

end

if (deltax>0)

if count>2
the right

count = count-2;
else

if count > 1
count =count-l;

end
end

end

% deltax>0 means if the source goes to

if (deltax<=0)
the right

% deltax>0 means if the source goes to

if count==col
count=count-2 ;

100

else
if count>l
count =count-l;

end
end

end

pos x(forl) = count;

end

%% This (for) loop finds out the y-coordinates of the new area where
%% the grid points move after the time delta t.

for1=0;

for forl=l:l:row

new_pos_y(forl)=y(1,forl)+deltay;

count = 1;

while ((y(l,count) > new_pos_y(1,forl)) & (count<row+10))

if count==row
count=row+20;

end

count=count+l;
end

if count>=row+20
count=row;

end

if (deltay>0)

if count==row
count=count-2;

else
if count>l

count = count-1;
end

end
end

if (deltay<=0)

% deltax>0 means if the source goes to
% the right

% deltax>0 means if the source goes to the
% right

101

if count>2
count=count-2;

else
if count==2
count =count-l;
end

end

end

po's_y(forl) = count;

end

%% Now, we know the coordinates of the area where the grid points
%% move.We have to use second degree polynomial interpolation to find
%% the temperature values of the new grid points. Here, we use the
%% temperature values from the previous time step.

for forl=l:surface

for for2=l:row

for for3=l:col

% temperatures
yO=temp((forl-1)*row+pos_y(for2) ,for3) ;
yl=temp((forl-1)*row+pos_y(for2)+1,for3) ;
y2=temp((forl-1)*row+pos_y(for2)+2, for3) ;

% positions
xO=y(pos_y(for2));
xl=y(pos_y(for2)+1);
x2=y(pos_y(for2)+2);

% our second degree polynomial is y=a*xA2+b*x+c
% a, b, c are the coefficients. Now find these coefficients.

b=(yO* (x2A2-xlA2)+yl* (xO/s2-x2A2)+y2* (xlA2-xOA2)) / . . .
(x0*(x2A2-xlA2)+xl*(x0A2-x2A2)+x2*(xlA2-xOA2)) ;

if abs(xO)~=abs(x2)
a=(y0-y2+b*(x2-x0))/(xOA2-x2A2);

else
a=(yO-yl+b*(xl-xO))/(xOA2-xlA2);

end

c=yO-a*xOA2-b*xO;

temp_old((forl-
D*row+for2,for3)=a*new_pos_y(for2)A2+b*new_pos_y(for2)+c;

102

% [pol_coeff]=polyfit(y(pos_y(for2):(pos_y(for2)+2)),
% temp((((forl-1)*row+pos_y(for2)):((forl-
l)*row+pos_y(for2)+2)),for3)',2);
% temp_old((forl-
1)*row+for2,for3)=polyval(pol_coeff,new_pos_y(for2));

end
end

end

for for1=1:surface

for for2=l:row

for for3=l:col

yO=temp_old((forl-1)*row+for2,pos_x(for3)) ;
yl=temp_old((forl-1)*row+for2,pos_x(for3)+1) ;
y2=temp_old((forl-1)*row+for2,pos_x(for3)+2) ;

xO=x(pos_x(for3));
xl=x(pos_x(for3)+1);
x2=x(pos_x(for3)+2) ;

b=(y0*(x2A2-xlA2)+yl*(xCT2-x2A2)+y2*(xlA2-xCr2))/ ...
(xO*(x2A2-xlA2)+xl*(xOA2-x2A2)+x2*(xlA2-xOA2)) ;

if abs(x0)~=abs(x2)
a=(y0-y2+b*(x2-x0))/(xOA2-x2A2) ;

else
a=(yO-yl+b*(xl-xO))/(xOA2-xlA2);

end

c=yO-a*xOA2-b*xO;

temp((forl-
1)*row+for2,for3)=a*new_pos_x(for3)A2+b*new_pos_x(for3)+c;

% [pol_coeff]=polyfit(x(pos_x(for3):(pos_x(for3)+2)), ...
% temp_old((forl-
1)*row+for2,((pos_x(for3)):(pos_x(for3)+2))),2);
% temp((forl-1)*row+for2,for3)=polyval(pol_coeff,new_pos_x(for3));

end
end

end

103

% THE FUNCTION PROGRAM (save_alllO.m)
%
1% the function program (save_alll0.m) saves all 3-d temp data at each
%% time-step by overwriting onto

function
[]=save_alllO(number,time,temp, b, delta_t,back, front,width,thickness,sav
e_counter,save_me);

save save alllO

104

% THE FUNCTION PROGRAM (save_thelO.m)
Q.
O

% the function program (save_thelO) saves top-surface temp at each
% time-step into a diff file name
%% (aathlO.m) and (aathlOgoon.m) can not be compiled without putting
%% "%" symbol in front of save....,after compiling erase "%" symbol and
%% save the program again.

function []=save_thelO(row,col,surface,time,temp, save_counter,b,x,y);

save (['temperaturelO_',num2str(save counter)]);

105

106

LIST OF REFERENCES

[1] Brown, R.T. and Masubuchi, K., "Fundamental Research on Underwater Welding,"

Welding Journal, Vol. 54, No. 6, pp. 178s-188s, June 1975.

[2] Tsai, C.L. and Masubuchi, K., "Mechanisms of Rapid Cooling and Their Design

Considerations in Underwater Welding," 11th Annual Offshore Technology Conference,

OTC 3469, Houston, TX, 1979.

[3] "Underwater Cutting and Welding," U.S. Navy Technical Manual, U.S.N. Supervisor

of Diving, Naval Ship Systems Command.

[4] Brown, A.J., Staub, J.A. and Masubuchi, K., "Fundamental Study of Underwater

Welding," 4th Annual Offshore Technology Conference, OTC 1621, Houston, TX, 1972.

[5] Rosenthal, D.," The Theory of Moving Sources of Heat and Its Application to Metal

Treatments," Transactions ofTheAS.M.E. Vol. 68, pp. 849-866, November 1946.

[6] Masubuchi, K., Analysis of Welded Structures, 1st Ed. London, Pergamon Press, 1980.

[7] Kou, S., Welding Metallurgy, John Wiley and Sons, 1987.

[8] Oreper, G.M. and Szekely, J., "Heat and Fluid-Flow Phenomena in Weld Pools,"

Journal of Fluid Mechanics, Vol.147, pp. 53-79,1984.

[9] Kou, S. and Wang, Y.H., "Computer Simulation of Convection in Moving Arc Weld

Pools," Metallurgical Transactions A, Vol. 17A, pp. 2271-2277, December 1986.

107

[10] Kou, S. and Wang, Y.H., "Three-Dimensional Convection in Laser Melted Pools,"

Metallurgical Transactions A, Vol. 17A, pp. 2265-2270, December 1986.

[11] Correa, S.M. and Sundeil, R.E., "A Computational and Experiment Study of The

Fluid Flow in Weld Pools," S. Kou and R. Mehrabian. Eds., Modeling and Control of

Casting and Welding Processes, Metallurgical Society, pp. 211-227, Warrendale, PA,

1986.

[12] Saedi, H.R. and Unkel, W., " Thermal-Fluid Model for Weld Pool Geometry

Dynamics," Journal of Dynamic Systems, Measurement and Control, Vol. Ill,

pp. 268-276, June 1989.

[13] Zacharia, T., Eraslan, A.H., Aidun, D.K. and David, S.A., " Three-Dimensional

Transient Model for Arc Welding Process," Metallurgical Transactions, Vol. 20B,

pp. 645-659, October 1989.

[14] Kim, S.D. and Na, S.J., " A Study on Heat and Mass Flow in Stationary Gas

Tungsten Arc Welding Using The Numerical Mapping Method," Journal of Engineering

Manufacture, Part B, pp. 233-242, 1989.

[15] Ramanan, N. and Korpela, S.A., " Fluid Dynamics of a Stationary Weld Pool,"

Metallurgical Transactions, Vol. 21A, pp. 45-57, January 1990.

[16] Ule, R.L., Y. Joshi and E.B. Sedy, "A New Technique for Three-Dimensional

Transient Heat Transfer Computations of Autogenous Arc Welding," Metallurgical

Transactions B, Vol. 21B, pp. 1033-1047, December 1990.

[17] Kanouff, M. and Greif, R., " The Unsteady Development of a GTA Weld Pool,"

International Journal of Heat and Mass Transfer, Vol. 35, pp. 967-969

108

[18] Joshi, Y., Dutta, P., Schupp, P.E., Espinosa, D., "Nonaxisymmetric Convection in

Stationary Gas Tungsten Arc Weld Pools," Journal of Heat Transfer, Vol. 119,

pp. 164-172, February 1997.

[19] Espinosa, D.C., Master's Thesis, Naval Postgraduate School, Monterey, CA, 1991.

[20] Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid

Dynamics The Finite Volume Method, Longman Group Ltd., 1995.

[21] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing

Corporation, 1980.

[22] Patankar, S.V., Computation of Conduction and Duct Flow Heat Transfer,

Innovative Research, Inc., Maple Grove, MN, 1991.

[23] Kreith, F. and Bohn, M.S., Principles of Heat Transfer, 5th Ed., West Publishing

Company, St. Paul, MN, 1993.

[24] Rohsenow, W.M. and Choi, H., Heat, Mass and Momentum Transfer, Prentice-Hall,

Inc., New Jersey, 1961.

[25] Incropera, F.P. and De Witt, D.P., Introduction to Heat Transfer, 3rd Ed., John Wiley

& Sons, 1996.

[26] Tsai, C.L. and Masubuchi, K., "Mechanisms of Rapid Cooling in Underwater

Welding," Applied Ocean Research, Vol. 1, No. 2,1979.

109

110

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code ME 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Ashok Gopinath, Code ME/GK 2
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Naval/Mechanical Engineering Curricular Office, Code 34 1
Naval Postgraduate School
Monterey, CA 93943-5000

6. Deniz Kuwetleri Komutanligi 2
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY 06100

7. Deniz Harp Okulu Komutanligi 1
Kutuphane
Tuzla, Istanbul, TURKEY 81704

8. Yasar Vehbi Isiklar 2
Feyzullah Mahallesi Esenyurt Sokak
Tufekciler Apt. No. 16/6
Maltepe, Istanbul, TURKEY

111

9. Istanbul Teknik Universitesi Makina Muh.Bl.
Ratip Berber Kutuphanesi
Maslak, Istanbul, TURKEY

10. Ibrahim Girgin
Deniz Harp Okulu Komutanligi
Teknik Bilimler Bolum Baskanligi
Makina Ogretim Uyesi
Tuzla, Istanbul, TURKEY 81704

112

